×

Global dynamics of the Hastings-Powell system. (English) Zbl 1296.34136

Summary: This paper studies the problem of bounding a domain that contains all compact invariant sets of the Hastings-Powell system. The results were obtained using the first-order extremum conditions and the iterative theorem to a biologically meaningful model. As a result, we calculate the bounds given by a tetrahedron with excisions, described by several inequalities of the state variables and system parameters. Therefore, a region is identified where all the system dynamics are located, that is, its compact invariant sets: equilibrium points, periodic-homoclinic-heteroclinic orbits, and chaotic attractors. It was also possible to formulate a nonexistence condition of the compact invariant sets. Additionally, numerical simulations provide examples of the calculated boundaries for the chaotic attractors or periodic orbits. The results provide insights regarding the global dynamics of the system.

MSC:

34D35 Stability of manifolds of solutions to ordinary differential equations
92D40 Ecology
37N25 Dynamical systems in biology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] D. A. Hsieh, “Chaos and nonlinear dynamics: application to financial markets,” The Journal of Finance, vol. 46, no. 5, pp. 1839-1877, 1991.
[2] A. Dalgleish, “The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines,” Monthly Journal of the Association of Physicians, vol. 92, no. 6, pp. 347-359, 1999.
[3] A. Ben-Tal, V. Kirk, and G. Wake, “Banded chaos in power systems,” IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 105-110, 2001. · doi:10.1109/61.905606
[4] E. Tziperman, L. Stone, M. A. Cane, and H. Jarosh, “El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator,” Science, vol. 264, no. 5155, pp. 72-74, 1994.
[5] L. N. Coria and K. E. Starkov, “Bounding a domain containing all compact invariant sets of the permanent-magnet motor system,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp. 3879-3888, 2009. · Zbl 1221.34120 · doi:10.1016/j.cnsns.2008.09.001
[6] C. N. K. Anderson, C.-H. Hsieh, S. A. Sandin et al., “Why fishing magnifies fluctuations in fish abundance,” Nature, vol. 452, no. 7189, pp. 835-839, 2008. · doi:10.1038/nature06851
[7] A. Klebanoff and A. Hastings, “Chaos in three-species food chains,” Journal of Mathematical Biology, vol. 32, no. 5, pp. 427-451, 1994. · Zbl 0823.92030 · doi:10.1007/BF00160167
[8] Y. A. Kuznetsov and S. Rinaldi, “Remarks on food chain dynamics,” Mathematical Biosciences, vol. 134, no. 1, pp. 1-33, 1996. · Zbl 0844.92025 · doi:10.1016/0025-5564(95)00104-2
[9] R. K. Upadhyay, R. K. Naji, and N. Kumari, “Dynamical complexity in some ecological models: effect of toxin production by phytoplankton,” Lithuanian Association of Nonlinear Analysts (LANA). Nonlinear Analysis. Modelling and Control, vol. 12, no. 1, pp. 123-138, 2007.
[10] J. T. Wootton, “Experimental species removal alters ecological dynamics in a natural ecosystem,” Ecology, vol. 91, no. 1, pp. 42-48, 2010. · doi:10.1890/08-1868.1
[11] A. Hastings and T. Powell, “Chaos in a three-species food chain,” Ecology, vol. 72, no. 3, pp. 896-903, 1991.
[12] A. A. Gomes, E. Manica, and M. C. Varriale, “Applications of chaos control techniques to a three-species food chain,” Chaos, Solitons and Fractals, vol. 35, no. 3, pp. 432-441, 2008. · Zbl 1130.92054 · doi:10.1016/j.chaos.2006.05.075
[13] K. McCann and P. Yodzis, “Biological conditions for chaos in a three-species food chain,” Ecology, vol. 75, no. 2, pp. 561-564, 1994.
[14] K. McCann and P. Yodis, “Bifurcation structure of a three-species food chains model,” Theoretical Population Biology, vol. 48, no. 1, pp. 93-125, 1995. · Zbl 0854.92022 · doi:10.1006/tpbi.1995.1023
[15] A. P. Krishchenko, “Estimations of domains with cycles,” Computers & Mathematics with Applications, vol. 34, no. 2-4, pp. 325-332, 1997. · Zbl 0894.34024 · doi:10.1016/S0898-1221(97)00130-2
[16] A. P. Krishchenko and K. E. Starkov, “Iteration method of the localization of periodic orbits,” in Proceedings of the International Conference on Physics and Control (PhysCon ’05), pp. 602-605, St. Petersburg, Russia, August 2005. · doi:10.1109/PHYCON.2005.1514055
[17] K. E. Starkov and A. P. Krishchenko, “Localization of periodic orbits of polynomial systems by ellipsoidal estimates,” Chaos, Solitons and Fractals, vol. 23, no. 3, pp. 981-988, 2005. · Zbl 1077.34046 · doi:10.1016/j.chaos.2004.06.002
[18] A. P. Krishchenko and K. E. Starkov, “Localization of compact invariant sets of nonlinear time-varying systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 18, no. 5, pp. 1599-1604, 2008. · Zbl 1147.34326 · doi:10.1142/S021812740802121X
[19] K. E. Starkov, “Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems,” Physics Letters A, vol. 372, no. 41, pp. 6269-6272, 2008. · Zbl 1225.70012 · doi:10.1016/j.physleta.2008.07.073
[20] A. P. Krishchenko and K. E. Starkov, “Localization of compact invariant sets of nonlinear systems with applications to the Lanford system,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 11, pp. 3249-3256, 2006. · Zbl 1126.34347 · doi:10.1142/S0218127406016768
[21] A. P. Krishchenko and K. E. Starkov, “Localization of compact invariant sets of the Lorenz system,” Physics Letters A, vol. 353, no. 5, pp. 383-388, 2006. · Zbl 1181.37044 · doi:10.1016/j.physleta.2005.12.104
[22] A. Krishchenko and K. Starkov, “Estimation of the domain containing all compact invariant sets of a system modelling the amplitude of a plasma instability,” Physics Letters A, vol. 367, no. 1-2, pp. 65-72, 2007. · doi:10.1016/j.physleta.2007.02.088
[23] B. Deng, “Food chain chaos with canard explosion,” Chaos, vol. 14, no. 4, pp. 1083-1092, 2004. · Zbl 1080.34043 · doi:10.1063/1.1814191
[24] Y. A. Kuznetsov, S. Muratori, and S. Rinaldi, “Homoclinic bifurcations in slow-fast second order systems,” Nonlinear Analysis. Theory, Methods & Applications, vol. 25, no. 7, pp. 747-762, 1995. · Zbl 0840.34065 · doi:10.1016/0362-546X(94)E0005-2
[25] S. Muratori and S. Rinaldi, “Low- and high-frequency oscillations in three-dimensional food chain systems,” SIAM Journal on Applied Mathematics, vol. 52, no. 6, pp. 1688-1706, 1992. · Zbl 0774.92024 · doi:10.1137/0152097
[26] K. E. Starkov and L. N. Coria, “Global dynamics of the Kirschner-Panetta model for the tumor immunotherapy,” Nonlinear Analysis. Real World Applications, vol. 14, no. 3, pp. 1425-1433, 2013. · Zbl 1317.92043 · doi:10.1016/j.nonrwa.2012.10.006
[27] K. E. Starkov, L. N. Coria, and L. T. Aguilar, “On synchronization of chaotic systems based on the Thau observer design,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 17-25, 2012. · Zbl 1239.93018 · doi:10.1016/j.cnsns.2011.04.020
[28] H. I. Freedman and P. Waltman, “Mathematical analysis of some three-species food-chain models,” Mathematical Biosciences, vol. 33, no. 3-4, pp. 257-276, 1977. · Zbl 0363.92022 · doi:10.1016/0025-5564(77)90142-0
[29] H. I. Freedman and J. W.-H. So, “Global stability and persistence of simple food chains,” Mathematical Biosciences, vol. 76, no. 1, pp. 69-86, 1985. · Zbl 0572.92025 · doi:10.1016/0025-5564(85)90047-1
[30] Y. Kuang, “Global stability and persistence in diffusive food chains,” The ANZIAM Journal, vol. 43, no. 2, pp. 247-268, 2001. · Zbl 1013.35007
[31] K. E. Starkov, “Compact invariant sets of the static spherically symmetric Einstein-Yang-Mills equations,” Physics Letters A, vol. 374, no. 15-16, pp. 1728-1731, 2010. · Zbl 1236.83001 · doi:10.1016/j.physleta.2010.02.035
[32] K. E. Starkov, “Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems,” Physics Letters A, vol. 375, no. 36, pp. 3184-3187, 2011. · Zbl 1252.83129 · doi:10.1016/j.physleta.2011.06.064
[33] P. Hogeweg and B. Hesper, “Interactive instruction on population interactions,” Computers in Biology and Medicine, vol. 8, no. 4, pp. 319-327, 1978.
[34] K. E. Lonngren, B. Er-Wei, and U. Ahmet, “Dynamics and synchronization of the Hastings-Powell model of the food chain,” Chaos, Solitons & Fractals, vol. 20, no. 2, pp. 387-393, 2004. · Zbl 1045.37061 · doi:10.1016/S0960-0779(03)00421-1
[35] C. T. Perretti, G. Sugihara, and S. B. Munch, “Nonparametric forecasting outperforms parametric methods for a simulated multispecies system,” Ecology, vol. 94, pp. 794-800, 2013.
[36] M. C. Varriale and A. A. Gomes, “A study of a three species food chain,” Ecological Modelling, vol. 110, no. 2, pp. 119-133, 1998. · doi:10.1016/S0304-3800(98)00062-3
[37] K. Starkov and L. N. Coria, “Bounding the domain of some three species food systems,” in Proceedings of the 2nd IFAC Conference on Analysis and Control of Chaotic Systems, Queen Mary University of London, London, UK, 2009, http://www.ifac-papersonline.net/. · Zbl 1221.34120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.