×

Spiral waves on the sphere for an alloy electrodeposition model. (English) Zbl 1510.78044

Summary: This paper focuses on the emergence of spiral waves in a specific morpho-electrochemical reaction-diffusion model on a sphere. This study fits in the framework of the morphological control of material electrodeposited onto spherical particles that is crucial to the energetic efficiency of the recharge process as well as to the durability of energy storage devices. The spherical geometry for the electrode surface is of notable practical interest since spheres are the shape of choice for flow batteries and metal-air devices [the third author et al., “Depth-dependent scanning photoelectron microspectroscopy unravels the mechanism of dynamic pattern formation in alloy electrodeposition”, J. Phys. Chem. C 122, No. 2, 15996–6007 (2018; doi:10.1021/acs.jpcc.8b01267)]. Motivated by this technological framework, in this paper we extend the results on pattern formation in [J. Maselko, “Symmetrical double rotor spial waves on spherical surfaces”, J. Chem. Soc. Faraday Trans. 94, 2343–2345 (1998)] to include investigations on the spiral wave phenomenology. We show that spiral waves emerge because of the interplay between two specific model parameters: one regulating the oscillatory dynamics in the kinetics and the other one related to the domain size. We present systematic numerical simulations based on the finite element method LSFEM [the first author et al., Commun. Nonlinear Sci. Numer. Simul. 48, 484–508 (2017; Zbl 1510.92034); M. Frittelli et al., IMA J. Numer. Anal. 39, No. 1, 235–270 (2019; Zbl 1483.65155)] accompanied by the computation of suitable indicators that allow to characterize and compare the spatio-temporal features. Interestingly, the model also supports a mechanism of spirals break up leading to a complex spatio-temporal phenomenology. The findings of our study have been validated with experimental results on Ag-In and Ag-Co electrodeposition.

MSC:

78A57 Electrochemistry
78A55 Technical applications of optics and electromagnetic theory
35B36 Pattern formations in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] Murray, J. D., Mathematical biology II - spatial models and biomedical applications (2003), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1006.92002
[2] Zykov, V. S., Simulation of wave process in excitable media (1987), Manchester University Press: Manchester University Press Manchester · Zbl 0691.73021
[3] Davidenko, J. M.; Pertsov, A. V.; Salomonsz, R.; Baxter, W.; Jalife, J., Stationary and drifting spiral waves of excitation in isolated cardiac muscle, Nature, 355, 349-351 (1992)
[4] Roth, B. J., Meandering of spiral waves in anisotropic cardiac tissue, Physica D, 150, 1, 127-136 (2001) · Zbl 0974.92005
[5] Keener, J. P.; Tyson, J. J., Spiral waves in the Belousov-Zhabotinskii reaction, Physica D, 21, 2, 307-324 (1986) · Zbl 0611.35041
[6] Winfree, A. T., When time breaks down (1987), Princeton Univ. Press: Princeton Univ. Press Princeton
[7] Bozzini, B.; Amati, M.; Gregoratti, L.; Lacitignola, D.; Sgura, I.; Krastev, I.; Ts, D., Intermetallics as key to spiral formation in In-Co electrodeposition. a study based on photoelectron microspectroscopy, mathematical modelling and numerical approximations, J Phys D, 48, 39, 395502 (2015)
[8] Lacitignola, D.; Bozzini, B.; Sgura, I., Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Applicandae Mathematicae, 132, 377-389 (2014) · Zbl 1304.35348
[9] Chavez, F.; Kapral, R.; Rousseau, G.; Glass, L., Scroll waves in spherical shell geometries, Chaos, 11, 4, 757-765 (2001) · Zbl 1080.92500
[10] Abramychev, A. Y.; Davydov, V. A.; Zykov, V. S., Drift of spiral waves on nonuniformly curved surfaces, Zh Eksp Teor Fiz, 97, 1188-1197 (1990)
[11] Manz, N.; Davydov, V. A.; M üller, S. C.; Br, M., Dependence of the spiral rotation frequency on the surface curvature of reaction-diffusion systems, Phys Lett A, 316, 5, 311-316 (2003)
[12] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev Mod Phys, 74, 99-143 (2002) · Zbl 1205.35299
[13] Scheel, A., Bifurcation to spiral waves in reaction-diffusion systems, SIAM J Math Anal, 29, 6, 1399-1418 (1998) · Zbl 0928.35017
[14] Liu, S.; Liu, S.; Fu, Z.; Zhao, Q., The Hopf bifurcation and spiral wave solution of the complex Ginzburg-Landau equation, Chaos Solitons Fractals, 13, 7, 1377-1381 (2002) · Zbl 0997.35089
[15] Ramos, J. I., Dynamics of spiral waves in excitable media with local time-periodic modulation, Chaos Solitons Fractals, 13, 7, 1383-1392 (2002) · Zbl 1074.76644
[16] Henry, H., Spiral wave drift in an electric field and scroll wave instabilities, Phys Rev E, 70, 026204 (2004)
[17] Chen, J.; Xu, J.; Zhang, X.; Zhang, J.; Zhang, X. W., Controlling chaos by developing spiral wave from heterogeneity in excitable medium, Cent Eur J Phys, 7, 1, 108-113 (2009)
[18] Davidsen, J.; Glass, L.; Kapral, R., Topological constraints on spiral wave dynamics in spherical geometries with inhomogeneous excitability, Phys Rev E, 70, 056203 (2004)
[19] Kollar, R.; Scheel, A., Coherent structures generated by inhomogeneities in oscillatory media, SIAM J Appl Dyn Syst, 6, 1, 236-262 (2007) · Zbl 1210.37052
[20] Grindrod, P.; Gomatam, J., The geometry and motion of reaction-diffusion waves on closed two-dimensional manifolds, J Math Biol, 25, 6, 597-610 (1987) · Zbl 0646.92001
[21] Keener, J. P., A geometrical theory for spiral waves in excitable media, SIAM J Appl Math, 46, 6, 1039-1056 (1986) · Zbl 0655.35046
[22] Paullet, J.; Ermentrout, B.; Troy, W., The existence of spiral waves in an oscillatory reaction-diffusion system, SIAM J Appl Math, 54, 5, 1386-1401 (1994) · Zbl 0823.92003
[23] Tsai, J. C., Rotating spiral waves in lambda-omega systems on circular domains, Physica D, 239, 1007-1025 (2010) · Zbl 1189.37063
[24] Dai, J.-Y., Spiral waves in circular and spherical geometries - The Ginzburg-Landau Paradigm (2017), Dissertation: Dissertation Freie Universität Berlin
[25] Bozzini, B.; Lacitignola, D.; Sgura, I., Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, J Solid State Electrochem, 17, 2, 467-479 (2013)
[26] Krastev, I.; Dobrovolska, T., New examples of electrodeposited alloy systems with pattern formation, Zast Mater, 57, 156-165 (2016)
[27] Maselko, J., Symmetrical double rotor spiral waves on spherical surfaces, J Chem Soc Faraday Trans, 94, 2343-2345 (1998)
[28] Maselko, J.; Showalter, K., Single and double spiral waves on spherical surfaces, React Kinet Catal Lett, 42, 263-274 (1990)
[29] Gomatam, J.; Amdjadi, F., Reaction-diffusion equations on a sphere: meandering of spiral waves, Phys Rev E, 56, 3913-3919 (1997)
[30] Rohlf, K.; Glass, L.; Kapral, R., Spiral wave dynamics in excitable media with spherical geometries, Chaos, 16, 3 (2006) · Zbl 1151.35391
[31] Yagisita, H.; Mimura, M.; Yamada, M., Spiral wave behaviors in an excitable reaction-diffusion system on a sphere, Physica D, 124, 1, 126-136 (1998) · Zbl 0936.35093
[32] Mukta, K. N.; MacLaurin, J. N.; Robinson, P. A., Theory of corticothalamic brain activity in a spherical geometry: spectra, coherence, and correlation, Phys Rev E, 96, 052410 (2017)
[33] Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S., Standing and travelling waves in a spherical brain model: the Nunez model revisited, Physica D, 349, 27-45 (2017) · Zbl 1376.92014
[34] Raub, E.; Schall, A., Silber-indium-legierungen. ein beitrag zur frage der anlaufbestandigen silberlegierungen, Z Metallkde, 30, 149-151 (1938)
[35] Bozzini, B.; Amati, M.; Dobrovolska, T.; Gregoratti, L.; Krastev, I.; Sgura, I.; Taurino, A.; Kiskinova, M., Depth-dependent scanning photoelectron microspectroscopy unravels the mechanism of dynamic pattern formation in alloy electrodeposition, J Phys Chem C, 122, 28, 15996-16007 (2018)
[36] Dobrovolska, T.; Georgiev, M.; Krastev, I., Electrodeposition of Gold-Indium alloys, Trans IMF, 93, 321-325 (2015)
[37] Krastev, I.; Dobrovolska, T.; Lacnjevac, U.; Nineva, S., Pattern formation during electrodeposition of indium-cobalt alloys, J Solid State Electrochem, 16, 11, 3449-3456 (2012)
[38] Golvano-Escobal, I.; Gonzalez-Rosillo, J. C.; Domingo, N.; Illa, X.; Lopez-Barbera, J. F.; Solsona, P.; Aballe, L.; Foerste, M.; Surinach, S., Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks, Sci Rep, 6, 30398 (2016)
[39] Dobrovolska, T.; Georgiev, M.; Krastev, I., Self-organisation phenomena during electrodeposition of Palladium-Indium alloys, Trans IMF, 93, 326-331 (2015)
[40] Kostov, V. S.; Krastev, I.; Dobrovolska, T., Pattern formation during electrodeposition of Copper-Antimony alloys, J Electrochem Sci Eng, 6, 105-111 (2016)
[41] Saltykova, N. A.; Portnyagin, O. V., Electrodeposition of iridium- ruthenium alloys from chloride melts: the structure of the deposits, Russ J Electrochem, 37, 924-930 (2001)
[42] Saltykova, N. A., Electrodeposition of platinum metals and alloys from chloride melts, J Min Metall, Sect B, 39, 201-208 (2003)
[43] Bozzini, B.; Lacitignola, D.; Sgura, I., Frequency as the greenest additive for metal plating: mathematical and experimental study of forcing voltage effects on electrochemical growth dynamics, Int J Electrochem Sci, 6, 4553-4571 (2011)
[44] Sgura, I.; Lawless, A. S.; Bozzini, B., Parameter estimation for a morphochemical reaction-diffusion model of electrochemical pattern formation, Inverse Probl Sci Eng, 27, 5, 618-647 (2019) · Zbl 1483.65151
[45] Lacitignola, D.; Bozzini, B.; Frittelli, M.; Sgura, I., Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition, Commun Nonlinear Sci NumerSimul, 48, 484-508 (2017) · Zbl 1510.92034
[46] Lacitignola, D.; Bozzini, B.; Sgura, I., Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, Eur J Appl Math, 26, 2, 143-173 (2015) · Zbl 1383.92099
[47] Lacitignola, D.; Bozzini, B.; Peipmann, R.; Sgura, I., Cross-diffusion effects on a morphochemical model for electrodeposition, Appl Math Modell, 57, 492-513 (2018) · Zbl 1480.92030
[48] Dziuk, G.; Elliott, C. M., Finite element methods for surface PDEs, Acta Numerica, 22, 289-396 (2013) · Zbl 1296.65156
[49] A10(1)-A10(15)
[50] Frittelli, M.; Madzvamuse, A.; Sgura, I.; Venkataraman, C., Preserving invariance properties of reaction-diffusion systems on stationary surfaces, IMA J Numer Anal, 39, 1, 235-270 (2019) · Zbl 1483.65155
[51] Varea, C.; Aragón, J. L.; Barrio, R. A., Turing patterns on a sphere, Phys Rev E, 60, 4588-4592 (1999)
[52] Mele, C.; Bilotta, A.; Bocchetta, P.; Bozzini, B., Characterization of the particulate anode of a laboratory flow Zn-Air fuel cell, J Appl Electrochem, 47, 877-888 (2017)
[53] Qi, W.; Koenig, G. M.J., Flow battery systems with solid electroactive materials, J Vac Sci Technol B, 35, 040801 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.