×

Evidential inference for diffusion-type processes. (English) Zbl 1510.62338

Summary: This article analyses diffusion-type processes from a new point-of-view. Consider two statistical hypotheses on a diffusion process. We do not use a classical test to reject or accept one hypothesis using the Neyman-Pearson procedure and do not involve Bayesian approach. As an alternative, we propose using a likelihood paradigm to characterizing the statistical evidence in support of these hypotheses. The method is based on evidential inference introduced and described by R. M. Royall [Statistical evidence. A likelihood paradigm. London: Chapman & Hall (1997; Zbl 0919.62004)]. In this paper, we extend the theory of Royall to the case when data are observations from a diffusion-type process instead of iid observations. The empirical distribution of likelihood ratio is used to formulate the probability of strong, misleading and weak evidences. Since the strength of evidence can be affected by the sampling characteristics, we present a simulation study that demonstrates these effects. Also we try to control misleading evidence and reduce them by adjusting these characteristics. As an illustration, we apply the method to the Microsoft stock prices.

MSC:

62M05 Markov processes: estimation; hidden Markov models
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
62A01 Foundations and philosophical topics in statistics

Citations:

Zbl 0919.62004
Full Text: DOI

References:

[1] Grenander U. Stochastic processes and statistical inference. Ark Mat. 1950;1:195-277. doi: 10.1007/BF02590638[Crossref], [Google Scholar] · Zbl 0058.35501
[2] Grenander U. Abstract inference. New York: Wiley; 1981. [Google Scholar] · Zbl 0505.62069
[3] Anderson TW, Goodman LA. Statistical inference about Markov chains. Ann Math Stat. 1957;28:89-110. doi: 10.1214/aoms/1177707039[Crossref], [Google Scholar] · Zbl 0087.14905
[4] Billingsley P. Statistical inference for Markov processes. Chicago: University of Chicago Press; 1961. [Google Scholar] · Zbl 0106.34201
[5] Hajek J. On linear statistical problems m stochastic processes. Cz Math J. 1962;12:404-444. [Google Scholar] · Zbl 0114.34504
[6] Rao MM. Inference in stochastic processes, I. Theory Prob Appl. 1963;VTII:266-281. doi: 10.1137/1108030[Crossref], [Google Scholar] · Zbl 0128.38803
[7] Liptser RS, Shiryayev AN. Statistics of random processes, Vol. 1. New York: Springer; 1977. [Crossref], [Google Scholar] · Zbl 0364.60004
[8] Parakasa Rao BLS. Statistical inference for diffusion type processes. London: Arnold/New York: Oxford University Press; 1999. [Google Scholar] · Zbl 0952.62077
[9] Le Breton A. Parameter estimation in a linear stochastic differential equation. In: J. Kožešnik, editor. Transactions of the Seventh Prague conference on information theory, statistical decision functions, random processes and of the 1974 European meeting of statisticians. Dordrecht: Springer, 1977. p. 353-366. [Google Scholar]
[10] Kutoyants YA. Estimation of the drift coefficient parameter of a diffusion in the smooth case. Theory Probab Appl. 1977;22:399-406. doi: 10.1137/1122047[Crossref], [Web of Science ®], [Google Scholar]
[11] Yoshida N. Estimation for diffusion processes from discrete observation. J Multivariate Anal. 1992;41:220-242. doi: 10.1016/0047-259X(92)90068-Q[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0811.62083
[12] Hoffmann M. Adaptive estimation in diffusion processes. Stoch Process Appl. 1999;79:135-163. doi: 10.1016/S0304-4149(98)00074-X[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1043.62528
[13] Pedersen AR. Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli. 1995;1:257-279. doi: 10.2307/3318480[Crossref], [Google Scholar] · Zbl 0839.62079
[14] Pedersen AR. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Statist. 1995;22:55-71. [Web of Science ®], [Google Scholar] · Zbl 0827.62087
[15] Ait-Sahalia Y. Transition densities for interest rate and other nonlinear diffusions. J Financ. 1999;54:1361-1395. doi: 10.1111/0022-1082.00149[Crossref], [Web of Science ®], [Google Scholar]
[16] Sorensen H. Inference for diffusion processes and stochastic volatility models, Ph.D. thesis, University of Copenhagen; 2000 [cited 2015 Jan 13]. Available from: http://www.math.ku.dk/noter/filer/phd00hs.pdf[Google Scholar]
[17] Pedersen AR. Estimating the nitrous oxide emission rate from the soil surface by means of a diffusion model. Scand J Statist. 2000;27:385-403. doi: 10.1111/1467-9469.00196[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0976.62111
[18] Eraker B. MCMC analysis of diffusion models with application to finance. J Bus and Econom Statist. 2001;19:177-191. doi: 10.1198/073500101316970403[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[19] Bibby BM, Sorensen M. Simplified estimating functions for diffusion models with a high-dimensional parameter. Scand J Statist. 2001;28:99-112. doi: 10.1111/1467-9469.00226[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0973.60071
[20] Ait-Sahalia Y. Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica. 2002;70:223-262. doi: 10.1111/1468-0262.00274[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1104.62323
[21] Durham GB, Gallant AR. Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J Bus Econ Statist. 2002;20:297-338. doi: 10.1198/073500102288618397[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[22] Bibby BM, Skovgaard IM, Sorensen M. Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli. 2005;11:191-220. doi: 10.3150/bj/1116340291[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1066.60071
[23] Chen SX, Gao J, Tang CY. A test for model specification of diffusion processes. Ann Stat. 2008;36:167-198. doi: 10.1214/009053607000000659[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1132.62063
[24] Boukhetala K, Guidoum A. Sim.DiffProc: A package for simulation of diffusion processes in r, Preprint submitted to Journal of Statistical Software; 2011 [cited 2015 Jan 13]. Available from: https://hal.archives-ouvertes.fr/hal-00629841 [Google Scholar]
[25] Neyman J. A first course in probability and statistics. New York: Henry Holt and Company; 1950. [Google Scholar] · Zbl 0054.05603
[26] Hacking I. Logic of statistical inference. New York: Cambridge University Press; 1965. [Crossref], [Google Scholar] · Zbl 0133.41604
[27] Royall R. Statistical evidence: a likelihood paradigm. London: Chapman and Hall; 1997. [Google Scholar] · Zbl 0919.62004
[28] Jeffreys H. Theory of probability. New York: Oxford University Press; 1961. [Google Scholar] · Zbl 0116.34904
[29] Edwards AW. Likelihood. Baltimore (MD): Johns Hopkins University Press; 1992. expanded ed. [Google Scholar] · Zbl 0833.62004
[30] Royall R. On the probability of observing misleading statistical evidence. JASA Theory Methods. 2000;95:760-780. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1013.62002
[31] Blume JD. Likelihood methods for measuring statistical evidence. Statist Med. 2002;21:2563-2599. doi: 10.1002/sim.1216[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[32] Royall R, Tsou T-S. Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. J R Statist Soc B. 2003;65:391-404. part 2. doi: 10.1111/1467-9868.00392[Crossref], [Google Scholar] · Zbl 1065.62047
[33] Bjornstad JF. Likelihood and statistical evidence in survey sampling. Stat Transit. 2003;6:23-31. [Google Scholar]
[34] De Santis F. Statistical evidence and sample size determination for Bayesian hypothesis testing. J Statist Plan Inference. 2004;124:121-144. doi: 10.1016/S0378-3758(03)00198-8[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1094.62032
[35] Emadi M, Ahmadi J, Arghami NR. Comparison of record data and random observations based on statistical evidence. Statist Pap. 2006;48:1-21. doi: 10.1007/s00362-006-0313-z[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1132.62325
[36] Blume JD. How to choose a working model for measuring the statistical evidence about a regression parameter. Int Statist Rev. 2005;73:351-363. doi: 10.1111/j.1751-5823.2005.tb00153.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1105.62003
[37] Blume JD, Su L, Olveda RM, McGarvey ST. Statistical evidence for GLM regression parameters: a robust likelihood approach. Stat Med. 2007;26:2919-2936. doi: 10.1002/sim.2759[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[38] Thompson B. The nature of statistical evidence. New York: Springer; 2007. [Google Scholar] · Zbl 1312.62007
[39] Arashi M, Emadi M. Evidential inference based on record data and inter-record times. Statistical Papers. 2008;49:291-301. doi: 10.1007/s00362-006-0013-8[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1168.62003
[40] Kateri M, Balakrishnan N. Statistical evidence in contingency tables analysis. J Stat Plan Infer. 2008;138:873-887. doi: 10.1016/j.jspi.2007.02.005[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1130.62059
[41] Hoch JS, Blume JD. Measuring and illustrating statistical evidence in a cost-effectiveness analysis. J Health Econ. 2008;27:476-495. doi: 10.1016/j.jhealeco.2007.07.002[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[42] Emadi M. Mixture models in view of evidential analysis. Communications in Statistics-Simulation and Computation. 2013;42:1824-1835. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1301.62055
[43] Kallianpur G. Stochastic filterinbg theory. New York: Springer; 1980. [Crossref], [Google Scholar] · Zbl 0458.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.