×

A Mellin transform approach to wavelet analysis. (English) Zbl 1510.44005

Summary: The paper proposes a fractional calculus approach to continuous wavelet analysis. Upon introducing a Mellin transform expression of the mother wavelet, it is shown that the wavelet transform of an arbitrary function \(f(t)\) can be given a fractional representation involving a suitable number of Riesz integrals of \(f(t)\), and corresponding fractional moments of the mother wavelet. This result serves as a basis for an original approach to wavelet analysis of linear systems under arbitrary excitations. In particular, using the proposed fractional representation for the wavelet transform of the excitation, it is found that the wavelet transform of the response can readily be computed by a Mellin transform expression, with fractional moments obtained from a set of algebraic equations whose coefficient matrix applies for any scale \(a\) of the wavelet transform. Robustness and computationally efficiency of the proposed approach are shown in the paper.

MSC:

44A15 Special integral transforms (Legendre, Hilbert, etc.)
26A33 Fractional derivatives and integrals
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] Goupillaud, P.; Grossmann, A.; Morlet, J., Cycle-octave and related transforms in seismic signal analysis, Geoexploration, 23, 85-105 (1984)
[2] Grossmann, A.; Morlet, J., Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J Math Anal, 15, 4, 723-736 (1984) · Zbl 0578.42007
[3] Daubechies, I., Ten lectures on wavelets, Philadelphia: Society for Industrial and Applied Mathematics; (1992) · Zbl 0776.42018
[4] Newland, D. E., An introduction to random vibrations, spectral and wavelet analysis, Harlow: Longman Scientific and Technical; (1993)
[5] Basu, B.; Gupta, V. K., Non-stationary seismic response of MDOF systems by wavelet transform, Earthq Eng Struct Dyn, 26, 12, 1243-1258 (1997)
[6] Basu, B.; Gupta, V. K., Stochastic seismic response of single degree-of-freedom systems through wavelets, Eng Struct, 22, 12, 1714-1722 (2000)
[7] Spanos, P. D.; Failla, G., Evolutionary spectra estimation using wavelets, J Eng Mech, 130, 8, 952-960 (2004)
[8] Huang, G.; Chen, X., Wavelets-based estimation of multivariate evolutionary spectra and its application to nonstationary downburst winds, Eng Struct, 31, 4, 976-989 (2009)
[9] Failla, G.; Pappatico, M.; Cundari, G. A., A wavelet-based spectrum for non-stationary processes, Mech Res Commun, 38, 5, 361-367 (2011) · Zbl 1272.74233
[10] Kong, F.; Spanos, P. D.; Li, J.; Kougioumtzoglou, I. A., Response evolutionary power spectrum determination of chain-like MDOF non-linear structural systems via harmonic wavelets, Int J Non-Linear Mech, 66, 3-17 (2014)
[11] Chen, S. L.; Liu, J. J.; Lai, H. C., Wavelet analysis for identification of damping ratios and natural frequencies, J Sound Vib, 323, 130-147 (2009)
[12] Kougioumtzoglou, I. A.; Spanos, P. D., An identification approach for linear and nonlinear time-variant structural systems via harmonic wavelets, Mech Syst Signal Process, 37, 1-2, 338-352 (2013)
[13] Spanos, P. D.; Failla, G.; Santini, A.; Pappatico, M., Damage detection in Euler-Bernoulli beams via spatial wavelet analysis, Struct Control Health Monit, 13, 472-487 (2006)
[14] Solís, M.; Algaba, M.; Galvín, P., Continuous wavelet analysis of mode shapes differences for damage detection, Mech Syst Signal Process, 40, 2, 645-666 (2013)
[15] Liu, X.; Zhou, Y.; Wang, X.; Wang, J., A wavelet method for solving a class of nonlinear boundary value problems, Commun Nonlinear Sci Numer Simulat, 18, 1939-1948 (2013) · Zbl 1277.65058
[16] Saeedi, H.; Moghadam, M. M., Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets, Commun Nonlinear Sci Numer Simulat, 16, 1216-1226 (2011) · Zbl 1221.65140
[17] Biazar, J.; Ebrahimi, H., Chebyshev wavelets approach for nonlinear systems of Volterra integral equations, Comput Math Appl, 63, 608-616 (2012) · Zbl 1238.65122
[18] Li, B.; Chen, X., Wavelet-based numerical analysis: A review and classification, Finite Elem Anal Des, 81, 14-31 (2014)
[19] Spanos, P. D.; Failla, G., Wavelets: Theoretical concepts and vibrations related applications, Shock Vib Dig, 37, 5, 359-375 (2005)
[20] Akansu, A. N.; Serdijn, W. A.; Selesnick, I. W., Emerging applications of wavelets: A review, Phys Commun, 3, 1-18 (2010)
[21] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering. Elsevier Science (1998)
[22] Kilbas, A. A.A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations (2006), North-Holland Mathematics Studies. Elsevier Science & Tech · Zbl 1092.45003
[23] Mainardi, F., An historical perspective on fractional calculus in linear viscoelasticity, Fract Calc Appl Anal, 15, 4, 712-717 (2012) · Zbl 1314.74005
[24] Miller, K.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), Wiley · Zbl 0789.26002
[25] Tarasov, V. E.; Zaslavsky, G. M., Conservation laws and Hamilton’s equations for systems with long-range interaction and memory, Commun Nonlinear Sci Numer Simul, 13, 9, 1860-1878 (2008) · Zbl 1221.70024
[26] Laskin, N.; Zaslavsky, G., Nonlinear fractional dynamics on a lattice with long range interactions, Physica A, 368, 38-54 (2006)
[27] Failla, G.; Santini, A.; Zingales, M., Solution strategies for 1D elastic continuum with long-range interactions: Smooth and fractional decay, Mech Res Commun, 37, 13-21 (2010) · Zbl 1272.74051
[28] Tarasov, V. E., Power-law spatial dispersion from fractional Liouville equation, Phys Plasmas, 20, 102110 (2013)
[29] Koeller, R. C., Applications of fractional calculus to the theory of viscoelasticity, Trans ASME J Appl Mech, 51, 2, 299-307 (1984) · Zbl 0544.73052
[30] Bagley, R. L.; Torvik, P. J., On the fractional calculus model of viscoelastic behavior, J Rheol, 30, 1, 133-155 (1986) · Zbl 0613.73034
[31] Meral, F. C.; Royston, T. J.; Magin, R., Fractional calculus in viscoelasticity: An experimental study, Commun Nonlinear Sci Numer Simulat, 15, 4, 939-945 (2010) · Zbl 1221.74012
[32] Failla, G.; Pirrotta, A., On the stochastic response of a fractionally-damped Duffing oscillator, Commun. Nonlinear Sci Numer Simulat, 17, 5131-5142 (2012) · Zbl 1417.74024
[33] Galucio, A. C.; Deu, J. F.; Ohayon, R., Finite element formulation of viscoelastic sandwich beams using fractional derivative operators, Comput Mech, 33, 282-291 (2004) · Zbl 1067.74065
[34] Magin, R. L.; Royston, T. J., Fractional-order elastic models of cartilage: a multi-scale approach, Commun Nonlinear Sci Numer Simul, 15, 3, 657-664 (2010) · Zbl 1221.74055
[35] Alotta, G.; Di Paola, M., Probabilistic characterization of nonlinear systems under α-stable white noise via complex fractional moments, Physica A: Stat Mech Appl, 420, 265-276 (2015) · Zbl 1398.60058
[36] Cottone, G.; Di Paola, M.; Metzler, R., Fractional calculus approach to the statistical characterization of random variables and vectors, Physica A, 389, 909-920 (2010)
[37] Di Paola, M.; Pinnola, F. P., Riesz fractional integrals and complex fractional moments for the probabilistic characterization of random variables, Probab Eng Mech, 29, 149-156 (2012)
[38] Ll, Y., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun Nonlinear Sci Numer Simulat, 15, 9, 2284-2292 (2010) · Zbl 1222.65087
[39] Rehman, M. U.; Khan, R. A., The Legendre wavelet method for solving fractional differential equations, Commun Nonlinear Sci Numer Simulat, 16, 4163-4173 (2011) · Zbl 1222.65063
[40] Saeedi, H.; Mollahasani, N.; Moghadam, M. M.; Chuev, G., An operational Haar wavelet method for solving fractional Volterra integral equations, Int J Appl Math Comp Sci, 21, 3, 535-547 (2011) · Zbl 1233.65100
[41] Zhu, L.; Fan, Q., Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun Nonlinear Sci Numer Simulat, 17, 2333-2341 (2012) · Zbl 1335.45002
[42] Saeedi, H.; Moghadam, M. M.; Mollahasani, N.; Chuev, G. N., A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun Nonlinear Sci Numer Simulat, 16, 1154-1163 (2011) · Zbl 1221.65354
[43] Heydari, M. H.; Hooshmandasl, M. R.; Mohammadi, F.; Cattani, C., Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun Nonlinear Sci Numer Simulat, 19, 37-48 (2014) · Zbl 1344.65126
[44] Wang, Y.; Fan, Q., The second kind Chebyshev wavelet method for solving fractional differential equations, Appl Math Comput, 218, 8592-8601 (2012) · Zbl 1245.65090
[45] Li, Y.; Sun, N.; Zheng, B.; Wang, Q.; Zhang, Y., Wavelet operational matrix method for solving the Riccati differential equation Commun, Nonlinear Sci Numer Simulat, 19, 483-493 (2014) · Zbl 1470.65144
[46] Li, X., Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method, Commun Nonlinear Sci Numer Simulat, 17, 3934-3946 (2012) · Zbl 1250.65094
[47] Zhu, L.; Fan, Q., Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW, Commun Nonlinear Sci Numer Simulat, 18, 1203-1213 (2013) · Zbl 1261.35152
[48] Dinç, E.; Demirkaya, F.; Baleanu, D.; Kadioğlu, Y.; Kadioğlu, E., New approach for simultaneous spectral analysis of a complex mixture using the fractional wavelet transform, Commun Nonlinear Sci Numer Simulat, 15, 812-818 (2010)
[49] Dinç, E.; Buker, E.; Baleanu, D., Fractional and continuous wavelet transforms for the simultaneous spectral analysis of a binary mixture system, Commun Nonlinear Sci Numer Simulat, 16, 4602-4609 (2011) · Zbl 1228.92023
[50] Li, J.-P.; Tang, Y.-Y., Fast wavelet analysis algorithm based on oblique projection and Mellin transform, Chin J Eng Math, 18, 5, 31-36 (2001)
[51] Butera, S.; Di Paola, M., Fractional differential equations solved by using Mellin transform, Commun Nonlinear Sci Numer Simulat, 19, 2220-2227 (2014) · Zbl 1457.34007
[52] Butera, S.; Di Paola, M., Mellin transform approach for the solution of coupled systems of fractional differential equations, Commun Nonlinear Sci Numer Simulat, 20, 32-38 (2015) · Zbl 1311.34012
[53] System identification toolbox (2013), MathWorks Company: MathWorks Company USA
[54] (2008), Wolfram Research Inc.: Wolfram Research Inc. USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.