×

Invariant measures and measurable projective factors for actions of higher-rank lattices on manifolds. (English) Zbl 1510.22006

Let \(\Gamma\) be a lattice in a non-compact, simple Lie group \(G\) of rank \(rk(G)\ge 2\). Let \(n(G)\) be the minimal dimension of a real representation of \(G\). Zimmer’s conjecture asserts that actions of \(\Gamma\) on a closed manifold \(M\) with \(\dim(M)<n(G)\) should factor over the action of a finite group. Results in this direction had so far either involved assumptions on preservation of a probability measure or on the regularity of the action, or had only concerned actions on the circle or on surfaces. The paper under review proves the existence of an invariant probability measure for Holder actions on manifolds of “moderately low dimension”.
Denote by \(r(G)\) the minimal resonant codimension of \(G\). This is \(n\) for Lie groups of type \(A_n\), \(2n-1\) for type \(B_n\) and \(C_n\), and \(2n-2\) for type \(D_n\) with \(n\ge 4\). The authors prove that there is an invariant probability measure for every Holder action of \(\Gamma\) on a closed manifold \(M\) with \(\dim(M)<r(G)\). In the case \(\dim(M)=r(G)\) they prove that either there is an invariant probability measure or there is a quasi-invariant probability measure such that the action is measurably conjugate to the standard action of \(\Gamma\) on \(G/Q\) for some maximal parabolic \(Q\subset G\).
More generally, the authors define a number \(m(G)\), which is the minimal value of the resonant codimension over certain parabolic subgroups. Its value is \(2n-1\) for Lie groups of type \(A_n\), \(4n-4\) for type \(B_n\) and \(C_n\), and \(4n-6\) for \(D_n\) with \(n\ge 5\). Then the authors prove that for an action with \(\dim(M)\le m(G)\) there is a quasi-invariant probability measure such that the action is a relatively measure-preserving extension of the standard action on \(G/Q\) for some maximal parabolic \(Q\subset G\).
As an application, the authors can complete the results of J. Franks and M. Handel [Duke Math. J. 131, No. 3, 441–468 (2006; Zbl 1088.37009)] to prove that for a non-uniform lattice in \(\mathrm{SL}(n,{\mathbb R}), n\ge 4\), any Holder action on a surface of genus at least \(1\) factors over the action of a finite group.
The methods used in the paper under review have shown to be important for the proof of Zimmer’s conjecture for cocompact lattices in \(\mathrm{SL}(n,\mathbb R)\) by A. Brown et al. [Ann. Math. (2) 196, No. 3, 891–940 (2022; Zbl 1508.22013)]. There is first the construction of a “suspension space” \(M^\alpha\), which is an \(M\)-bundle over \(\Gamma\backslash G\) and which comes with a Lie group action by \(G\) rather than the original \(\Gamma\)-action \(\alpha\) on \(M\). Further the proofs of the main theorems invoke the principle “non-resonance implies invariance” (see Proposition 5.1), which is also of importance for the proof of Zimmer’s conjecture.

MSC:

22E40 Discrete subgroups of Lie groups
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
57M60 Group actions on manifolds and cell complexes in low dimensions

References:

[1] Avila, Artur; Viana, Marcelo, Extremal {L}yapunov exponents: an invariance principle and applications, Invent. Math.. Inventiones Mathematicae, 181, 115-189 (2010) · Zbl 1196.37054 · doi:10.1007/s00222-010-0243-1
[2] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain, Kazhdan’s property ({T}), New Mathematical Monographs, 11, xiv+472 pp. (2008) · Zbl 1146.22009 · doi:10.1017/CBO9780511542749
[3] Bogensch\"{u}tz, Thomas; Crauel, Hans, The {A}bramov-{R}okhlin formula. Ergodic Theory and Related Topics, {III}, Lecture Notes in Math., 1514, 32-35 (1992) · Zbl 0764.58017 · doi:10.1007/BFb0097526
[4] Borel, Armand; Ji, Lizhen, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, xvi+479 pp. (2006) · Zbl 1100.22001 · doi:10.1007/0-8176-4466-0
[5] Brown, Aaron, Smooth ergodic theory of {\( \protect \Bbb{Z}^d\)}-actions {P}art 2: {E}ntropy formulas for rank-1 systems (2016)
[6] Brown, Aaron; Damjanovi\'{c}, Danijela; Zhang, Zhiyuan, {\(C^1\)} actions on manifolds by lattices in {L}ie groups, Compos. Math.. Compositio Mathematica, 158, 529-549 (2022) · Zbl 1517.22004 · doi:10.1112/s0010437x22007278
[7] Brown, Aaron; Fisher, David; Hurtado, Sebastian, Zimmer’s conjecture: {S}ubexponential growth, measure rigidity, and strong property {(T)}, Ann. of Math. (2). Annals of Mathematics. Second Series, 196, 891-940 (2022) · Zbl 1508.22013 · doi:10.4007/annals.2022.196.3.1
[8] Brown, Aaron; Fisher, David; Hurtado, Sebastian, Zimmer’s conjecture for actions of {\({\rm SL}(m, \Bbb Z)\)}, Invent. Math.. Inventiones Mathematicae, 221, 1001-1060 (2020) · Zbl 1482.22023 · doi:10.1007/s00222-020-00962-x
[9] Brown, Aaron; Rodriguez Hertz, F., Smooth ergodic theory of {\( \mathbb{Z}^d\)}-actions {P}art 1: {L}yapunov exponents, dynamical charts, and coarse {L}yapunov manifolds (2016)
[10] Brown, Aaron; Rodriguez Hertz, F.; Wang, Z., Smooth ergodic theory of {\( \mathbb{Z}^d\)}-actions {P}art {3}: {P}roduct structure of entropy (2016)
[11] Burger, M.; Monod, N., Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal.. Geometric and Functional Analysis, 12, 219-280 (2002) · Zbl 1006.22010 · doi:10.1007/s00039-002-8245-9
[12] Einsiedler, M.; Lindenstrauss, E., Diagonal actions on locally homogeneous spaces. Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, 155-241 (2010) · Zbl 1209.00050 · doi:10.4171/owr/2010/29
[13] Einsiedler, Manfred; Katok, Anatole, Invariant measures on {\(G/\Gamma \)} for split simple {L}ie groups {\(G\)}, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 56, 1184-1221 (2003) · Zbl 1022.22023 · doi:10.1002/cpa.10092
[14] Einsiedler, Manfred; Katok, Anatole, Rigidity of measures-the high entropy case and non-commuting foliations. Probability in Mathematics, Israel J. Math.. Israel Journal of Mathematics, 148, 169-238 (2005) · Zbl 1097.37017 · doi:10.1007/BF02775436
[15] Eskin, Alex; Mirzakhani, Maryam, Invariant and stationary measures for the {\({\rm SL}(2,\Bbb R)\)} action on moduli space, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 127, 95-324 (2018) · Zbl 1478.37002 · doi:10.1007/s10240-018-0099-2
[16] Farb, Benson; Shalen, Peter, Real-analytic actions of lattices, Invent. Math.. Inventiones Mathematicae, 135, 273-296 (1999) · Zbl 0954.22007 · doi:10.1007/s002220050286
[17] Fisher, David, Groups acting on manifolds: around the {Z}immer program. Geometry, Rigidity, and Group Actions, Chicago Lectures in Math., 72-157 (2011) · Zbl 1264.22012 · doi:10.7208/chicago/9780226237909.001.0001
[18] Franks, John; Handel, Michael, Distortion elements in group actions on surfaces, Duke Math. J.. Duke Mathematical Journal, 131, 441-468 (2006) · Zbl 1088.37009 · doi:10.1215/S0012-7094-06-13132-0
[19] Ghys, \'{E}tienne, Actions de r\'{e}seaux sur le cercle, Invent. Math.. Inventiones Mathematicae, 137, 199-231 (1999) · Zbl 0995.57006 · doi:10.1007/s002220050329
[20] Kalinin, Boris; Spatzier, Ralf, Rigidity of the measurable structure for algebraic actions of higher-rank {A}belian groups, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 25, 175-200 (2005) · Zbl 1073.37005 · doi:10.1017/S014338570400046X
[21] Katok, A.; Spatzier, R. J., Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 16, 751-778 (1996) · Zbl 0859.58021 · doi:10.1017/S0143385700009081
[22] Katok, Anatole; Rodriguez Hertz, Federico, Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups, J. Mod. Dyn.. Journal of Modern Dynamics, 4, 487-515 (2010) · Zbl 1213.37037 · doi:10.3934/jmd.2010.4.487
[23] Knapp, Anthony W., Lie Groups Beyond an Introduction, Progr. in Math., 140, xviii+812 pp. (2002) · Zbl 1075.22501 · doi:10.1007/978-1-4757-2453-0
[24] Ledrappier, F., Propri\'{e}t\'{e}s ergodiques des mesures de {S}ina\"{\i}, Inst. Hautes \'{E}tudes Sci. Publ. Math.. Institut des Hautes \'{E}tudes Scientifiques. Publications Math\'{e}matiques, 163-188 (1984) · Zbl 0561.58037
[25] Ledrappier, F., Positivity of the exponent for stationary sequences of matrices. Lyapunov Exponents, Lecture Notes in Math., 1186, 56-73 (1986) · Zbl 0591.60036 · doi:10.1007/BFb0076833
[26] Ledrappier, F.; Young, L.-S., The metric entropy of diffeomorphisms. {I}. {C}haracterization of measures satisfying {P}esin’s entropy formula, Ann. of Math. (2). Annals of Mathematics. Second Series, 122, 509-539 (1985) · Zbl 0605.58028 · doi:10.2307/1971328
[27] Ledrappier, F.; Young, L.-S., The metric entropy of diffeomorphisms. {II}. {R}elations between entropy, exponents and dimension, Ann. of Math. (2). Annals of Mathematics. Second Series, 122, 540-574 (1985) · Zbl 1371.37012 · doi:10.2307/1971329
[28] Ledrappier, Fran\c{c}ois; Strelcyn, Jean-Marie, A proof of the estimation from below in {P}esin’s entropy formula, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 2, 203-219 (1982) · Zbl 0533.58022 · doi:10.1017/S0143385700001528
[29] Ledrappier, Fran\c{c}ois; Walters, Peter, A relativised variational principle for continuous transformations, J. London Math. Soc. (2). Journal of the London Mathematical Society. Second Series, 16, 568-576 (1977) · Zbl 0388.28020 · doi:10.1112/jlms/s2-16.3.568
[30] Lorentz, G. G., Some new functional spaces, Ann. of Math. (2). Annals of Mathematics. Second Series, 51, 37-55 (1950) · Zbl 0035.35602 · doi:10.2307/1969496
[31] Lubotzky, Alexander; Mozes, Shahar; Raghunathan, M. S., The word and riemannian metrics on lattices of semisimple groups, Inst. Hautes \'{E}tudes Sci. Publ. Math.. Institut des Hautes \'{E}tudes Scientifiques. Publications Math\'{e}matiques, 5-53 (2000) · Zbl 0988.22007
[32] Margulis, G. A., Discrete Subgroups of Semisimple {L}ie Groups, Ergeb. Math. Grenzgeb., 17, x+388 pp. (1991) · Zbl 0732.22008
[33] Margulis, G. A.; Tomanov, G. M., Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math.. Inventiones Mathematicae, 116, 347-392 (1994) · Zbl 0816.22004 · doi:10.1007/BF01231565
[34] Nevo, Amos; Zimmer, Robert J., Homogenous projective factors for actions of semi-simple {L}ie groups, Invent. Math.. Inventiones Mathematicae, 138, 229-252 (1999) · Zbl 0936.22007 · doi:10.1007/s002220050377
[35] Nevo, Amos; Zimmer, Robert J., A structure theorem for actions of semisimple {L}ie groups, Ann. of Math. (2). Annals of Mathematics. Second Series, 156, 565-594 (2002) · Zbl 1012.22038 · doi:10.2307/3597198
[36] Polterovich, Leonid, Growth of maps, distortion in groups and symplectic geometry, Invent. Math.. Inventiones Mathematicae, 150, 655-686 (2002) · Zbl 1036.53064 · doi:10.1007/s00222-002-0251-x
[37] Witte, Dave, Arithmetic groups of higher {\({\bf Q}\)}-rank cannot act on {\(1\)}-manifolds, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 122, 333-340 (1994) · Zbl 0818.22006 · doi:10.2307/2161021
[38] Zimmer, Robert J., Ergodic Theory and Semisimple Groups, Monogr. Math., 81, x+209 pp. (1984) · Zbl 0571.58015 · doi:10.1007/978-1-4684-9488-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.