×

Virial inversion and density functionals. (English) Zbl 1509.82009

Summary: We prove a novel inversion theorem for functionals given as power series in infinite-dimensional spaces. This provides a rigorous framework to prove convergence of density functionals for inhomogeneous systems with applications in classical density function theory, liquid crystals, molecules with various shapes or other internal degrees of freedom. The key technical tool is the representation of the inverse via a fixed point equation and a combinatorial identity for trees, which allows us to obtain convergence estimates in situations where Banach inversion fails.

MSC:

82B05 Classical equilibrium statistical mechanics (general)
82D15 Statistical mechanics of liquids
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82M36 Computational density functional analysis in statistical mechanics
47J07 Abstract inverse mapping and implicit function theorems involving nonlinear operators
05C05 Trees

References:

[1] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial Species and Tree-Like Structures, Encyclopedia of Mathematics and Its Applications, vol. 67 (1998), Cambridge University Press · Zbl 0888.05001
[2] Chayes, J. T.; Chayes, L.; Lieb, E. H., The inverse problem in classical statistical mechanics, Commun. Math. Phys., 93, 1, 57-121 (1984) · Zbl 0553.46050
[3] Dineen, S., Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematics (1999), Springer · Zbl 1034.46504
[4] Faris, W. G., Biconnected graphs and the multivariate virial expansion, Markov Process. Relat. Fields, 18, 3, 357-386 (2012) · Zbl 1272.82008
[5] Fernández, R.; Procacci, A.; Scoppola, B., The analyticity region of the hard sphere gas. Improved bounds, J. Stat. Phys., 128, 5, 1139-1143 (2007) · Zbl 1206.82099
[6] Gessel, I. M., A combinatorial proof of the multivariable Lagrange inversion formula, J. Comb. Theory, Ser. A, 45, 2, 178-195 (1987) · Zbl 0651.05009
[7] Groeneveld, J., Estimation Methods for Mayer’s Graphical Expansions (1967), University of Amsterdam, PhD thesis · Zbl 0212.29301
[8] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc., 7, 1, 65-122 (1982) · Zbl 0499.58003
[9] Harris, L. A., On the size of balls covered by analytic transformations, Monatshefte Math., 83, 1, 9-23 (1977) · Zbl 0356.46046
[10] Harris, L. A., Fixed points of holomorphic mappings for domains in Banach spaces, Abstr. Appl. Anal., 2003, 5, 261-274 (2003) · Zbl 1034.47021
[11] Jansen, S., Cluster and virial expansions for the multi-species Tonks gas, J. Stat. Phys., 161, 5, 1299-1323 (2015) · Zbl 1341.82015
[12] Jansen, S., Cluster expansions for Gibbs point processes, Adv. Appl. Probab., 51, 4, 1129-1178 (2019) · Zbl 1427.60202
[13] Jansen, S.; Kuna, T.; Tsagkarogiannis, D., Lagrange inversion and combinatorial species with uncountable color palette, Ann. Henri Poincaré, 22, 4, 1499-1534 (2021) · Zbl 1464.32001
[14] Jansen, S.; Tate, S. J.; Tsagkarogiannis, D.; Ueltschi, D., Multispecies virial expansions, Commun. Math. Phys., 330, 2, 801-817 (2014) · Zbl 1296.82022
[15] Kuna, T.; Tsagkarogiannis, D., Convergence of density expansions of correlation functions and the Ornstein-Zernike equation, Ann. Henri Poincaré, 19, 4, 1115-1150 (2018) · Zbl 1400.82163
[16] Kuna, T., Properties of marked Gibbs measures in high temperature regime, Methods Funct. Anal. Topol., 7, 3, 33-53 (2001) · Zbl 0984.82017
[17] Leroux, P., Enumerative problems inspired by Mayer’s theory of cluster integrals, Electron. J. Comb., 11, Article R32 pp. (2004) · Zbl 1054.05056
[18] Lebowitz, J. L.; Penrose, O., Convergence of virial expansions, J. Math. Phys., 5, 7, 841-847 (1964)
[19] Mayer, J. E.; Mayer, M. G., Statistical Mechanics (1940), John Wiley & Sons: John Wiley & Sons New York-London-Sydney · JFM 66.1175.01
[20] Morita, T.; Hiroike, K., A new approach to the theory of classical fluids. I, Prog. Theor. Phys., 23, 1003-1027 (1960) · Zbl 0097.44203
[21] Morita, T.; Hiroike, K., A new approach to the theory of classical fluids. III. General treatment of classical systems, Prog. Theor. Phys., 25, 537-578 (1961)
[22] Malyshev, V. A.; Minlos, R. A., Gibbs random fields, (Cluster Expansions. Cluster Expansions, Mathematics and Its Applications (Soviet Series), vol. 44 (1991), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht), Translated from the Russian by R. Kotecký and P. Holický · Zbl 0731.60099
[23] Mujica, J., Complex Analysis in Banach Spaces (1986), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam · Zbl 0586.46040
[24] Mujica, J., Holomorphic functions on Banach spaces, Note Mat., 25, 2, 113-138 (2006) · Zbl 1195.46046
[25] Nguyen, T. X.; Fernández, R., Convergence of cluster and virial expansions for repulsive classical gases, J. Stat. Phys., 179, 448-484 (2020) · Zbl 1434.82011
[26] Onsager, L., The effects of shape on the interaction of colloidal particles, Ann. N.Y. Acad. Sci., 51, 4, 627-659 (1949)
[27] Penrose, O., Convergence of fugacity expansions for fluids and lattice gases, J. Math. Phys., 4, 1312-1320 (1963) · Zbl 0122.46205
[28] Pulvirenti, E.; Tsagkarogiannis, D., Cluster expansion in the canonical ensemble, Commun. Math. Phys., 316, 2, 289-306 (2012) · Zbl 1260.82057
[29] Poghosyan, S.; Ueltschi, D., Abstract cluster expansion with applications to statistical mechanical systems, J. Math. Phys., 50, 5, Article 053509 pp. (2009) · Zbl 1187.82009
[30] Procacci, A.; Yuhjtman, S. A., Convergence of Mayer and virial expansions and the Penrose tree-graph identity, Lett. Math. Phys., 107, 1, 31-46 (2017) · Zbl 1366.82012
[31] Ruelle, D., Statistical Mechanics: Rigorous Results (1969), World Scientific · Zbl 0177.57301
[32] Secchi, P., On the Nash-Moser iteration technique, (Recent Developments of Mathematical Fluid Mechanics (2016), Springer), 443-457 · Zbl 1350.58003
[33] Stell, G., The equilibrium theory of classical fluids, (Frisch, H. L.; Lebowitz, J. L., Classical Fluids (1964), Benjamin: Benjamin New York), 171-261 · Zbl 0132.44402
[34] Tate, S. J., Virial expansion bounds, J. Stat. Phys., 153, 2, 325-338 (2013) · Zbl 1296.82039
[35] Ueltschi, D., Cluster expansions and correlation functions, Mosc. Math. J., 4, 2, 511-522 (2004) · Zbl 1070.82002
[36] Ueltschi, D.; Fernández, R.; Jansen, S.; Tsagkarogiannis, D., An improved tree-graph bound, Miniworkshop: Cluster Expansions: From Combinatorics to Analysis Through Probability. Miniworkshop: Cluster Expansions: From Combinatorics to Analysis Through Probability, Oberwolfach Rep., 14 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.