×

Multispecies virial expansions. (English) Zbl 1296.82022

Summary: We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange-Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs.

MSC:

82B26 Phase transitions (general) in equilibrium statistical mechanics
82B30 Statistical thermodynamics
82C22 Interacting particle systems in time-dependent statistical mechanics
82D05 Statistical mechanics of gases

References:

[1] Abdesselam A.: A physicist’s proof of the Lagrange-Good multivariable inversion formula. J. Phys. A 36, 9471-9477 (2003) · Zbl 1047.81539 · doi:10.1088/0305-4470/36/36/304
[2] de Bruijn N.G.: The Lagrange-Good inversion formula and its application to integral equations. J. Math. Anal. Appl. 92, 397-409 (1983) · Zbl 0517.45002 · doi:10.1016/0022-247X(83)90257-3
[3] Baert S., Lebowitz J.L.: Convergence of fugacity expansion and bounds on molecular distributions for mixtures. J. Chem. Phys. 40, 3474-3478 (1964) · doi:10.1063/1.1725039
[4] Bergeron F., Labelle G., Leroux P.: Combinatorial Species and Tree-like Structures, Encyclopaedia of Mathematics and its Applications, Vol. 67. Cambridge University Press, Cambridge (1998) · Zbl 0888.05001
[5] Born M., Fuchs K.: The statistical mechanics of condensing systems. Proc. R. Soc. A 166, 391 (1938) · JFM 64.1498.03 · doi:10.1098/rspa.1938.0100
[6] Ehrenborg R., Méndez M.: A bijective proof of infinite variated Good’s inversion. Adv. Math. 103, 221-259 (1994) · Zbl 0810.05070 · doi:10.1006/aima.1994.1011
[7] Faris W.G.: Combinatorics and cluster expansions. Probab. Surv. 17, 157-206 (2010) · Zbl 1191.82009
[8] Faris W.G.: Biconnected graphs and the multivariate virial expansion. Markov Proc. Rel. Fields 18, 357-386 (2012) · Zbl 1272.82008
[9] Fuchs K.: The statistical mechanics of many component gases. Proc. R. Soc. Lond. A. 179, 408-432 (1942) · JFM 68.0650.01 · doi:10.1098/rspa.1942.0015
[10] Gessel I.M.: A combinatorial proof of the multivariable Lagrange inversion formula. J. Combin. Theory 45, 178-195 (1987) · Zbl 0651.05009 · doi:10.1016/0097-3165(87)90013-6
[11] Good I.J.: Generalizations to several variables of Lagrange’s expansion, with applications to stochastic processes. Proc. Cambridge Philos. Soc. 56, 367-380 (1960) · Zbl 0135.18802 · doi:10.1017/S0305004100034666
[12] Good I.J.: The generalization of Lagrange’s expansion and the enumeration of trees. Proc. Cambridge Philos. Soc. 61, 499-517 (1965) · Zbl 0142.41204 · doi:10.1017/S0305004100004060
[13] Harrison S.F., Mayer J.E.: The statistical mechanics of condensing systems. IV. J. Chem. Phys. 6, 101 (1938) · doi:10.1063/1.1750194
[14] Henderson D., Leonard P.J.: One- and two-fluid van der Waals theories of liquid mixtures, I. Hard sphere mixtures. Proc. Natl. Acad. Sci. USA 67, 1818-1823 (1970) · Zbl 0274.76007 · doi:10.1073/pnas.67.4.1818
[15] Hill T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill Series in Advanced Chemistry, New York (1956) · Zbl 0072.20902
[16] Jansen S.: Mayer and virial series at low temperature. J. Stat. Phys. 147, 678-706 (2012) · Zbl 1252.82045 · doi:10.1007/s10955-012-0490-1
[17] Lebowitz J.L., Penrose O.: Convergence of virial expansions. J. Math. Phys. 7, 841-847 (1964) · doi:10.1063/1.1704186
[18] Leroux, P.: Enumerative problems inspired by Mayer’s theory of cluster integrals. Electr. J. Combin. 11 (2004) (Research Paper 32) · Zbl 1054.05056
[19] Lebowitz J.L., Rowlinson J.S.: Thermodynamic properties of mixtures of hard spheres. J. Chem. Phys. 41, 133 (1964) · doi:10.1063/1.1725611
[20] Mayer J.E.: The statistical mechanics of condensing systems. I. J. Chem. Phys. 5, 67 (1937) · Zbl 0016.08906 · doi:10.1063/1.1749933
[21] Mayer J.E.: Statistical mechanics of condensing systems V. Two-component systems. J. Phys. Chem. 43, 71-95 (1939) · doi:10.1021/j150388a006
[22] Mayer J.E., Ackermann P.G.: The statistical mechanics of condensing systems. II. J. Chem. Phys. 5, 74 (1937) · Zbl 0016.08907 · doi:10.1063/1.1749934
[23] Mayer J.E., Harrison S.F.: The statistical mechanics of condensing systems. III. J. Chem. Phys. 6, 87 (1938) · doi:10.1063/1.1750208
[24] Méndez M., Nava O.: Colored species, c-monoids, and plethysm. I. J. Combin. Theory Ser. A 64, 102-129 (1993) · Zbl 0787.05095 · doi:10.1016/0097-3165(93)90090-U
[25] Morais T., Procacci A.: Continuous particles in the canonical ensemble as an abstract polymer gas. J. Stat. Phys. 151, 830-849 (2013) · Zbl 1272.82013 · doi:10.1007/s10955-013-0731-y
[26] Poghosyan S., Ueltschi D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50, 053509 (2009) · Zbl 1187.82009 · doi:10.1063/1.3124770
[27] Pulvirenti E., Tsagkarogiannis D.: Cluster expansion in the canonical ensemble. Commun. Math. Phys. 316, 289-306 (2012) · Zbl 1260.82057 · doi:10.1007/s00220-012-1576-y
[28] Tate S.: Virial expansion bounds. J. Stat. Phys. 153, 325-338 (2013) · Zbl 1296.82039 · doi:10.1007/s10955-013-0831-8
[29] Ueltschi D.: Cluster expansions and correlation functions. Moscow Math. J. 4, 511-522 (2004) · Zbl 1070.82002
[30] Uhlenbeck G.E., Kahn B.: On the theory of condensation. Physica 5, 399 (1938) · doi:10.1016/S0031-8914(38)80068-9
[31] Zeidler E.: Applied Functional Analysis, Applied Mathematical Sciences, vol. 109. Springer, New York (1995) · Zbl 0834.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.