×

Quantum estimation through a bottleneck. (English) Zbl 1509.81224

Summary: We study the estimation of a single parameter characterizing families of unitary transformations acting on two systems. We consider the situation with the presence of bottleneck, i.e., only one of the systems can be measured to gather information. The estimation capabilities are related to unitaries’ generators. In particular, we establish continuity of quantum Fisher information with respect to generators. Furthermore, we find conditions on the generators to achieve the same maximum quantum Fisher information we would have in the absence of bottleneck. We also discuss the usefulness of initial entanglement across the two systems as well as across multiple estimation instances.

MSC:

81P50 Quantum state estimation, approximate cloning
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Helstrom, CW, Quantum Detection and Estimation Theory (1976), New York: Academic Press, New York · Zbl 1332.81011
[2] Ballester, M.A.: Estimation of SU(d) using entanglement, http://arxiv.org/abs/quant-ph/0507073 (2005)
[3] Hayashi, M., Parallel treatment of estimation of SU(2) and phase estimation, Phys. Lett. A, 354, 183 (2006) · doi:10.1016/j.physleta.2006.01.043
[4] Kahn, J., Fast rate estimation of a unitary operation in su(d), Phys. Rev. A, 75, 022326 (2007) · doi:10.1103/PhysRevA.75.022326
[5] Giovannetti, V.; Lloyd, S.; Maccone, L., Quantum metrology, Phys. Rev. Lett., 96, 010401 (2006) · doi:10.1103/PhysRevLett.96.010401
[6] Sasaki, M.; Ban, M.; Barnett, SM, Optimal parameter estimation of a depolarizing channel, Physical Review A, 66, 022308 (2002) · doi:10.1103/PhysRevA.66.022308
[7] Fujiwara, A.; Imai, H., Quantum parameter estimation of a generalized Pauli channel, J. Phys. A: Math. Gen., 36, 8093 (2003) · Zbl 1052.81020 · doi:10.1088/0305-4470/36/29/314
[8] Ji, Z.; Wang, G.; Duan, R.; Feng, Y.; Ying, M., Parameter estimation of quantum channels, IEEE Trans. Inf. Theory, 54, 5172 (2008) · Zbl 1319.81025 · doi:10.1109/TIT.2008.929940
[9] Stinespring, WF, Positive functions on \(C^*\)-algebras, Proc. Am. Math. Soc., 6, 211 (1955) · Zbl 0064.36703
[10] Le Boudec, J.-Y.: Performance Evaluation of Computer and Communication Systems. EPFL Press (2011)
[11] Rexiti, M.; Mancini, S., Adversarial versus cooperative quantum estimation, Quantum Inf. Process., 18, 102 (2019) · Zbl 1417.81068 · doi:10.1007/s11128-019-2219-4
[12] Gambetta, J.; Wiseman, HM, State and dynamical parameter estimation for open quantum systems, Physical Review A, 64, 042105 (2001) · doi:10.1103/PhysRevA.64.042105
[13] Tsang, M., Quantum metrology with open dynamical systems, New J. Phys., 15, 073005 (2013) · Zbl 1451.81302 · doi:10.1088/1367-2630/15/7/073005
[14] Alipour, S.; Mehboudi, M.; Rezakhani, AT, Quantum metrology in open systems: dissipative Cramer-Rao bound, Phys. Rev. Lett., 112, 120405 (2014) · doi:10.1103/PhysRevLett.112.120405
[15] Dragan, A.; Fuentes, I.; Louko, J., Quantum accelerometer: distinguishing inertial Bob from his accelerated twin Rob by a local measurement, Phys. Rev. D, 83, 085020 (2011) · doi:10.1103/PhysRevD.83.085020
[16] Wang, J.; Tian, Z.; Jing, J.; Fan, H., Quantum metrology and estimation of Unruh effect, Sci. Rep., 4, 7195 (2014) · doi:10.1038/srep07195
[17] Safranek, D., Kohlrus, J., Bruschi, D.E., Lee, A.R., Fuentes, I.: Ultimate precision: Gaussian parameter estimation in flat and curved spacetime, arXiv:1511.03905 (2015)
[18] El Gamal, A.; Kim, Y-H, Lecture Notes on Network Information Theory (2012), Cambridge: Cambridge University Press, Cambridge
[19] Winter, A., The capacity of the quantum multiple-access channel, IEEE Trans. Inf. Theory, 47, 3059 (2001) · Zbl 1021.94517 · doi:10.1109/18.959287
[20] Safranek, D., Discontinuities of the quantum Fisher information and the Bures metric, Phys. Rev. A, 95, 052320 (2017) · doi:10.1103/PhysRevA.95.052320
[21] Felice, D.; Cafaro, C.; Mancini, S., Information geometric methods for complexity, Chaos, 28, 032101 (2018) · Zbl 1407.81041 · doi:10.1063/1.5018926
[22] Rezakhani, AT; Alipour, S., On continuity of quantum Fisher information, Phys. Rev. A, 100, 032317 (2019) · doi:10.1103/PhysRevA.100.032317
[23] Karumanchi, S.; Mancini, S.; Winter, A.; Yang, D., Classical capacities of quantum channels with environment assistance, Probl. Inf. Transm., 52, 214 (2016) · Zbl 1368.81051 · doi:10.1134/S0032946016030029
[24] Kretschmann, D.; Schlingemann, D.; Werner, RF, The information-disturbance tradeoff and the continuity of Stinespring’s representation, IEEE Trans. Inf. Theory, 54, 1708 (2008) · Zbl 1306.94017 · doi:10.1109/TIT.2008.917696
[25] Rastegin, A.E.: Relations for certain symmetric norms and anti-norms before and after partial trace, arXiv:1202.3853v3 [quant-ph] (2012) · Zbl 1260.81011
[26] Hurwitz, A.: Über die erzeugung der invarianten durch integration. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse 71, (1897) · JFM 28.0103.03
[27] Zyczkowski, K.; Sommers, H-J, Induced measures in the space of mixed quantum states, J. Phys. A: Math. Gen., 34, 7111 (2001) · Zbl 1031.81011 · doi:10.1088/0305-4470/34/35/335
[28] Dahlsten, OCO; Lupo, C.; Mancini, S.; Serafini, A., Entanglement typicality, J. Phys. A: Math. Theor., 47, 363001 (2014) · Zbl 1298.81014 · doi:10.1088/1751-8113/47/36/363001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.