Skip to main content
Log in

Quantum estimation through a bottleneck

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the estimation of a single parameter characterizing families of unitary transformations acting on two systems. We consider the situation with the presence of bottleneck, i.e., only one of the systems can be measured to gather information. The estimation capabilities are related to unitaries’ generators. In particular, we establish continuity of quantum Fisher information with respect to generators. Furthermore, we find conditions on the generators to achieve the same maximum quantum Fisher information we would have in the absence of bottleneck. We also discuss the usefulness of initial entanglement across the two systems as well as across multiple estimation instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. In passing, we notice that the error defined in Eq. (1) of Ref. [5], to be consistent with the results reported there, should have been written with a square root, i.e., \(\delta \varphi =\left\langle {\left( \varphi _{est}/| \frac{\partial \langle \varphi _{est}\rangle _{av}}{\partial \varphi }|-\varphi \right) ^{2}}\right\rangle ^{\frac{1}{2}}\).

  2. Clearly, sampling a discontinuous function on a discrete set of points cannot be representative of the behavior of the function, while it can for a continuous function.

  3. We can always factor out e.g., \(\Vert \hat{\varvec{m}}\Vert \) from \(G_1\), which will cause a rescaling of the parameter \(t_1\), and incorporate it into the parameter \(\alpha \).

  4. It is worth mentioning that the set of optimal input states when \(t_1=t_2=0\) extends to \(\left( \cos \theta |0\rangle \pm i \sin \theta |1\rangle \right) _A |\varphi \rangle _E\), \(\forall \theta \in [0,2\pi ]\) and \(\forall |\varphi \rangle \in {\mathbb {C}}^2\).

  5. Notice that in (91) we cannot take the limit \(t_1\rightarrow 0\) (or \(t_2\rightarrow 0\)), because otherwise we should consider the case ii) (or i), respectively).

References

  1. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  2. Ballester, M.A.: Estimation of SU(d) using entanglement, http://arxiv.org/abs/quant-ph/0507073 (2005)

  3. Hayashi, M.: Parallel treatment of estimation of SU(2) and phase estimation. Phys. Lett. A 354, 183 (2006)

    Article  ADS  Google Scholar 

  4. Kahn, J.: Fast rate estimation of a unitary operation in su(d). Phys. Rev. A 75, 022326 (2007)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Sasaki, M., Ban, M., Barnett, S.M.: Optimal parameter estimation of a depolarizing channel. Physical Review A 66, 022308 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fujiwara, A., Imai, H.: Quantum parameter estimation of a generalized Pauli channel. J. Phys. A: Math. Gen. 36, 8093 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ji, Z., Wang, G., Duan, R., Feng, Y., Ying, M.: Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 54, 5172 (2008)

    Article  MathSciNet  Google Scholar 

  9. Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211 (1955)

    MathSciNet  MATH  Google Scholar 

  10. Le Boudec, J.-Y.: Performance Evaluation of Computer and Communication Systems. EPFL Press (2011)

  11. Rexiti, M., Mancini, S.: Adversarial versus cooperative quantum estimation. Quantum Inf. Process. 18, 102 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gambetta, J., Wiseman, H.M.: State and dynamical parameter estimation for open quantum systems. Physical Review A 64, 042105 (2001)

    Article  ADS  Google Scholar 

  13. Tsang, M.: Quantum metrology with open dynamical systems. New J. Phys. 15, 073005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cramer-Rao bound. Phys. Rev. Lett. 112, 120405 (2014)

    Article  ADS  Google Scholar 

  15. Dragan, A., Fuentes, I., Louko, J.: Quantum accelerometer: distinguishing inertial Bob from his accelerated twin Rob by a local measurement. Phys. Rev. D 83, 085020 (2011)

    Article  ADS  Google Scholar 

  16. Wang, J., Tian, Z., Jing, J., Fan, H.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 7195 (2014)

    Article  ADS  Google Scholar 

  17. Safranek, D., Kohlrus, J., Bruschi, D.E., Lee, A.R., Fuentes, I.: Ultimate precision: Gaussian parameter estimation in flat and curved spacetime, arXiv:1511.03905 (2015)

  18. El Gamal, A., Kim, Y.-H.: Lecture Notes on Network Information Theory. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  19. Winter, A.: The capacity of the quantum multiple-access channel. IEEE Trans. Inf. Theory 47, 3059 (2001)

    Article  MathSciNet  Google Scholar 

  20. Safranek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)

    Article  ADS  Google Scholar 

  21. Felice, D., Cafaro, C., Mancini, S.: Information geometric methods for complexity. Chaos 28, 032101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Rezakhani, A.T., Alipour, S.: On continuity of quantum Fisher information. Phys. Rev. A 100, 032317 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Karumanchi, S., Mancini, S., Winter, A., Yang, D.: Classical capacities of quantum channels with environment assistance. Probl. Inf. Transm. 52, 214 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kretschmann, D., Schlingemann, D., Werner, R.F.: The information-disturbance tradeoff and the continuity of Stinespring’s representation. IEEE Trans. Inf. Theory 54, 1708 (2008)

    Article  MathSciNet  Google Scholar 

  25. Rastegin, A.E.: Relations for certain symmetric norms and anti-norms before and after partial trace, arXiv:1202.3853v3 [quant-ph] (2012)

  26. Hurwitz, A.: Über die erzeugung der invarianten durch integration. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse 71, (1897)

  27. Zyczkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A: Math. Gen. 34, 7111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dahlsten, O.C.O., Lupo, C., Mancini, S., Serafini, A.: Entanglement typicality. J. Phys. A: Math. Theor. 47, 363001 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of M.R. is supported by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milajiguli Rexiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Following up Hurwitz parametrization [26], we can write N-qubit states as

$$\begin{aligned} \sum _{n=0}^{2^N-1} \nu _n\, |\,[n]_2\,\rangle , \end{aligned}$$
(101)

where \([n]_2\) stands for the binary representation of n. We also have

$$\begin{aligned} \nu _0= & {} \cos \vartheta _{2^N-1}, \end{aligned}$$
(102)
$$\begin{aligned} {\nu _{n>0}}= & {} e^{i\varphi _n}{\cos \vartheta _{2^N-1-n}}\prod _{\ell =2^N-n}^{2^N-1} \sin \vartheta _\ell , \end{aligned}$$
(103)

with

$$\begin{aligned} \vartheta _n\in [0,\pi /2], \quad \varphi _n\in [0,2\pi ]. \end{aligned}$$
(104)

Now searching the maximum of a function over the set of states (101) can be done by randomly sampling such states according to the Haar measure of \(U(2^N)\) [27]. However, in such a way, we cannot account for separable states, as this subset of states has a vanishing probability measure [28]. Therefore, we opted for sampling on a grid of 50 points for \(\vartheta _n\) in \([0,\pi /2]\) and 200 points for \(\varphi _n\) in \([0,2\pi ]\).

Appendix B

Consider a unitary with generator

$$\begin{aligned} G=\sigma _1\otimes \sigma _1+t_{22}\sigma _2\otimes \sigma _2+t_{33}\sigma _3\otimes \sigma _3, \end{aligned}$$
(105)

where \(t_{22}, t_{33}\in {\mathbb {R}}\). The eigenvalues of G result \(\{-1-t_{22}-t_{33}, 1+t_{22}-t_{33}, 1-t_{22}+t_{33}, -1+t_{22}+t_{33}\}\), hence, the maximum Fisher information we can get when accessing both systems B and F is:

$$\begin{aligned} {\overline{J}}_{BF}=\left\{ \begin{array}{ccc} 4\left( 1+|t_{33}|\right) ^2 &{} &{} |t_{22}|\le |t_{33}|, \; |t_{22}|<1 \\ 4\left( 1+|t_{22}|\right) ^2 &{} &{} |t_{33}|\le |t_{22}|, \; |t_{33}|<1 \\ 4\left( t_{22}+t_{33}\right) ^2 &{} &{} |t_{22}|, |t_{33}|\ge 1, \; t_{22}t_{33}>0\\ 4\left( t_{22}-t_{33}\right) ^2 &{} &{} |t_{22}|, |t_{33}|\ge 1, \; t_{22}t_{33}<0\\ \end{array}\right. . \end{aligned}$$
(106)

We can obtain:

  • \({\overline{J}}_{B}={\overline{J}}_{BF}=4\left( 1+t_{33}\right) ^2\), with input \(\frac{1}{2}\left( |00\rangle +|01\rangle -|10\rangle +|11\rangle \right) \);

  • \({\overline{J}}_{B}={\overline{J}}_{BF}=4\left( 1-t_{33}\right) ^2\), with input \(\frac{1}{2}\left( |00\rangle +|01\rangle +|10\rangle -|11\rangle \right) \);

  • \({\overline{J}}_{B}={\overline{J}}_{BF}=4\left( t_{22}+t_{33}\right) ^2\), with input \(\frac{1}{2}\left( |00\rangle +|01\rangle -|10\rangle -|11\rangle \right) \);

  • \({\overline{J}}_{B}={\overline{J}}_{BF}=4\left( t_{22}-t_{33}\right) ^2\), with input \(\frac{1}{2}\left( |00\rangle +|01\rangle +|10\rangle +|11\rangle \right) \);

  • \({\overline{J}}_{B}={\overline{J}}_{BF}=4\left( 1+t_{22}\right) ^2\), with input \(|01\rangle \);

  • \({\overline{J}}_{B}={\overline{J}}_{BF}=4\left( 1-t_{22}\right) ^2\), with input \(|00\rangle \).

Appendix C

Corollary 6.1

Given \(\rho _i(\alpha )=e^{\alpha {{\mathcal {L}}}_i}\rho \), with \({{\mathcal {L}}}_i\) Liuovillian superoperators, we have (dropping the dependence from \(\alpha \) for a lighter notation):

$$\begin{aligned} \left| J(\rho _1)-J(\rho _2)\right| \le \left( 2\pi C_1+C_2+2\pi C_2 \min \left\{ \Vert {{\mathcal {L}}}_1\Vert _{1\rightarrow 1}, \Vert {{\mathcal {L}}}_2\Vert _{1\rightarrow 1} \right\} \right) \left\| {{\mathcal {L}}}_1-{{\mathcal {L}}}_2 \right\| _{1\rightarrow 1}, \end{aligned}$$
(107)

where \(C_1,C_2\) are as in Corollary 3.2, and \(\Vert \cdot \Vert _{1\rightarrow 1}\) is the induced 1-norm on the superoperators, i.e., \(\left\| {{\mathcal {L}}}\right\| _{1\rightarrow 1}:=\sup _{\rho : \Vert \rho \Vert _1=1} \Vert {{\mathcal {L}}}\rho \Vert _1\).

Proof

Moving on from Theorem 3.1, for the first term at the right hand side of Eq. (14), we have

$$\begin{aligned} \left\| \rho _1-\rho _2\right\| { _2}&\le \left\| \rho _1-\rho _2\right\| _1 \end{aligned}$$
(108)
$$\begin{aligned}&\le \left\| e^{\alpha {{\mathcal {L}}}_1}- e^{\alpha {{\mathcal {L}}}_2}\right\| _{1\rightarrow 1} \end{aligned}$$
(109)
$$\begin{aligned}&\le \alpha \left\| {{\mathcal {L}}}_1- {{\mathcal {L}}}_2\right\| _{1\rightarrow 1}, \end{aligned}$$
(110)

where from (109) to (110) we have used the property (27) together with the fact that \(e^{\alpha {{\mathcal {L}}}_i}\) is trace preserving.

For the second term at the right hand side of Eq. (14), instead, we have

$$\begin{aligned}&\left\| \partial _\alpha \rho _1- \partial _\alpha \rho _2\right\| _2\nonumber \\&\quad =\left\| {{\mathcal {L}}}_1 e^{\alpha {{\mathcal {L}}}_1} - {{\mathcal {L}}}_2 e^{\alpha {{\mathcal {L}}}_2} \right\| _2 \end{aligned}$$
(111)
$$\begin{aligned}&\quad \le \left\| {{\mathcal {L}}}_1 e^{\alpha {{\mathcal {L}}}_1} - {{\mathcal {L}}}_2 e^{\alpha {{\mathcal {L}}}_2} \right\| _1 \end{aligned}$$
(112)
$$\begin{aligned}&\quad \le \left\| {{\mathcal {L}}}_1 e^{\alpha {{\mathcal {L}}}_1} - {{\mathcal {L}}}_2 e^{\alpha {{\mathcal {L}}}_2} \right\| _{1\rightarrow 1} \end{aligned}$$
(113)
$$\begin{aligned}&\quad \le \left\| {{\mathcal {L}}}_1 e^{\alpha {{\mathcal {L}}}_1} -{{\mathcal {L}}}_1 e^{\alpha {{\mathcal {L}}}_2} +{{\mathcal {L}}}_1 e^{\alpha {{\mathcal {L}}}_2} - {{\mathcal {L}}}_2 e^{\alpha {{\mathcal {L}}}_2} \right\| _{1\rightarrow 1} \end{aligned}$$
(114)
$$\begin{aligned}&\quad \le \left\| {{\mathcal {L}}}_1\right\| _{\rightarrow 1} \; \left\| e^{\alpha {{\mathcal {L}}}_1} -e^{\alpha {{\mathcal {L}}}_2}\right\| _{1\rightarrow 1} +\left\| {{\mathcal {L}}}_1- {{\mathcal {L}}}_2\right\| _{1\rightarrow 1}\; \left\| e^{\alpha {{\mathcal {L}}}_2} \right\| _{1\rightarrow 1} \end{aligned}$$
(115)
$$\begin{aligned}&\quad \le \left( 1+\alpha \left\| {{\mathcal {L}}}_1\right\| _{1\rightarrow 1}\right) \left\| {{\mathcal {L}}}_1- {{\mathcal {L}}}_2\right\| _{1\rightarrow 1}, \end{aligned}$$
(116)

where from (115) to (116) we have used the property (27) together with the fact that \(e^{\alpha {{\mathcal {L}}}_i}\) is trace preserving. Notice that we could have reversed the role of \( {{\mathcal {L}}}_1\) and \( {{\mathcal {L}}}_2\). Thus, by inserting Eqs. (110), (116) into (14) and taking into account that \(\alpha \in [0,2\pi ]\) we get the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rexiti, M., Mancini, S. Quantum estimation through a bottleneck. Quantum Inf Process 19, 367 (2020). https://doi.org/10.1007/s11128-020-02875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02875-3

Keywords

Navigation