×

Cauchy problem for non-autonomous fractional evolution equations. (English) Zbl 1509.47065

Summary: In this paper, we study the solvability of Cauchy problem for a class of non-autonomous fractional evolution equation with Caputo’s fractional derivative of order \(\alpha \in (1,2)\), which can be applied to model the time dependent coefficients fractional differential systems. We first introduce an operator family and analyze its properties, by the iterative method, we construct a solution to an operator-valued Volterra equation, which is the most critical ingredient to prove solvability of the problem. Finally, based on the solution operators we establish the existence and uniqueness of classical solutions.

MSC:

47D06 One-parameter semigroups and linear evolution equations
34G20 Nonlinear differential equations in abstract spaces
26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations
Full Text: DOI

References:

[1] Acquistapace, P.; Terreni, B., A unified approach to abstract linear non-autonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78, 47-107 (1987) · Zbl 0646.34006
[2] Arendt, W.; Chill, R.; Fornaro, S.; Poupaud, C., \(L^p\)-maximal regularity for non-autonomous evolution equations, J. Differential Equations, 237, 1-26 (2007) · Zbl 1126.34037 · doi:10.1016/j.jde.2007.02.010
[3] Alvarez, E.; Gal, C.; Keyantuo, V.; Warma, M., Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181, 24-61 (2019) · Zbl 1411.35268 · doi:10.1016/j.na.2018.10.016
[4] Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces. Doctoral thesis, Eindhoven University of Technology (2001) · Zbl 0989.34002
[5] El-Borai, MM, The fundamental solutions for fractional evolution equations of parabolic type, Boletin Asoc. Math. Venezolana, 11, 1, 29-43 (2004) · Zbl 1063.35099
[6] Caponetto, R., Fractional Order Systems: Modeling and Control Applications (2010), Singapore: World Scientific, Singapore · doi:10.1142/7709
[7] Caffarelli, LA; Stinga, PR, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 767-807 (2016) · Zbl 1381.35211 · doi:10.1016/j.anihpc.2015.01.004
[8] Dong, H.; Kim, D., \(L_p\)-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345, 289-345 (2019) · Zbl 1447.35352 · doi:10.1016/j.aim.2019.01.016
[9] Dong, H.; Kim, D., \(L_p\)-estimates for time fractional parabolic equations in divergence form with measurable coefficients, J. Funct. Anal., 278, 108338 (2020) · Zbl 1427.35316 · doi:10.1016/j.jfa.2019.108338
[10] Dong, H.; Liu, Y., Weighted mixed norm estimates for fractional wave equations with VMO coefficients, J. Differential Equations, 337, 168-254 (2022) · Zbl 1505.35063 · doi:10.1016/j.jde.2022.07.040
[11] Engheia, N., On the role of fractional calculus in electromagnetic theory, IEEE Antennas and Propagation Mag., 39, 4, 35-46 (1997) · doi:10.1109/74.632994
[12] Ezzat, MA, Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer, Physica B: Condensed Matter, 405, 19, 4188-4194 (2010) · doi:10.1016/j.physb.2010.07.009
[13] Giga, Y.; Namba, T., Well-posedness of Hamilton-Jacobi equations with Caputo’s time fractional derivative, Comm. Partial Differential Equations, 42, 1088-1120 (2017) · Zbl 1378.35324 · doi:10.1080/03605302.2017.1324880
[14] Glöckle, WG; Nonnenmacher, TF, A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 1, 46-53 (1995) · doi:10.1016/S0006-3495(95)80157-8
[15] He, JW; Zhou, Y.; Peng, L.; Ahmad, B., On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on \(R^N\), Adv. Nonlinear Anal., 11, 580-597 (2022) · Zbl 1503.35163 · doi:10.1515/anona-2021-0211
[16] He, JW; Zhou, Y., Hölder regularity for non-autonomous fractional evolution equations, Fract. Calc. Appl. Anal., 25, 2, 378-407 (2022) · Zbl 1503.35263 · doi:10.1007/s13540-022-00019-1
[17] Henríquez, HR; Poblete, V.; Pozo, JC, Existence of solutions for the semilinear abstract Cauchy problem of fractional order, Fract. Calc. Appl. Anal., 24, 5, 1409-1444 (2021) · Zbl 1498.34165 · doi:10.1515/fca-2021-0060
[18] Henríquez, HR; Mesquita, JG; Pozo, JC, Existence of solutions of the abstract Cauchy problem of fractional order, J. Func. Anal., 281, 4, 109028 (2021) · Zbl 1469.34017 · doi:10.1016/j.jfa.2021.109028
[19] Kato, T.; Tanabe, H., On the abstract evolution equation, Osaka Math. J., 14, 107-133 (1962) · Zbl 0106.09302
[20] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier Science B.V, Amsterdam · Zbl 1092.45003
[21] Kim, I.; Kim, KH; Lim, S., An \(L_q(L_p)\)-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306, 123-176 (2017) · Zbl 1361.35196 · doi:10.1016/j.aim.2016.08.046
[22] Li, YN; Sun, HR, Regularity of mild solutions to fractional cauchy problems with Riemann-Liouville fractional derivative, Elec. J. Diff. Equs., 184, 1-13 (2014) · Zbl 1306.34087
[23] Li, L.; Liu, JG; Wang, L., Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differential Equation., 265, 1044-1096 (2018) · Zbl 1427.35329 · doi:10.1016/j.jde.2018.03.025
[24] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity (2010), London: An Introduction to Mathematical Models. Imperial College Press, London · Zbl 1210.26004 · doi:10.1142/p614
[25] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[26] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), New York: Springer, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[27] Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, JL, A fractional porous medium equation, Adv. Math., 226, 1378-1409 (2011) · Zbl 1208.26016 · doi:10.1016/j.aim.2010.07.017
[28] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[29] Podlubny, I., Fractional-order systems and \(PI^\lambda D^\mu \)-controllers, IEEE Trans. Automat. Control, 44, 1, 208-214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[30] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 1, 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[31] Yagi, A.: Abstract Parabolic Evolution Equations and their Applications. Springer (2010) · Zbl 1190.35004
[32] Zhou, Y., Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 21, 3, 786-800 (2018) · Zbl 1405.34012 · doi:10.1515/fca-2018-0041
[33] Zhou, Y.; He, JW, A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25, 3, 924-961 (2022) · Zbl 1503.34038 · doi:10.1007/s13540-022-00057-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.