×

Existence of solutions for the semilinear abstract Cauchy problem of fractional order. (English) Zbl 1498.34165

Summary: In this paper we establish the existence of solutions for the nonlinear abstract Cauchy problem of order \(\alpha \in (1, 2)\), where the fractional derivative is considered in the sense of Caputo. The autonomous and nonautonomous cases are studied. We assume the existence of an \(\alpha\)-resolvent family for the homogeneous linear problem. By using this \(\alpha\)-resolvent family and appropriate conditions on the forcing function, we study the existence of classical solutions of the nonhomogeneus semilinear problem. The non-autonomous problem is discussed as a perturbation of the autonomous case. We establish a variation of the constants formula for the nonautonomous and nonhomogeneous equation.

MSC:

34G20 Nonlinear differential equations in abstract spaces
35G25 Initial value problems for nonlinear higher-order PDEs
47D09 Operator sine and cosine functions and higher-order Cauchy problems
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] S. Abbas, M. Benchohra, G.M. N’Guérékata, Topics in Fractional Differential Equations. Springer Science, New York (2012). · Zbl 1273.35001
[2] J.B. Baillon, Caractére borné de certains générateurs de semi-groupes linéaires dans les espaces de Banach. C. R. Acad. Sci. Paris290 (1980), 757-760. · Zbl 0436.47027
[3] D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional Dynamics and Control. Springer, New York (2012).
[4] E.G. Bazhlekova, Fractional Evolution Equations in Banach Spaces. Dissertation, Eindhoven University of Technology, Eindhoven (2001). · Zbl 0989.34002
[5] E. Bazhlekova, Existence and uniqueness results for fractional evolution equation in Hilbert space. Fract. Calc. Appl. Anal. 15, No 2 (2012), 232-243; ; https://www.degruyter.com/journal/key/fca/15/2/html. · Zbl 1302.35399 · doi:10.2478/s13540-012-0017-0
[6] S. Belarbi, Z. Dahmani, New controllability results for fractional evolution equations in Banach spaces. Acta Universitatis Apulensis34 (2013), 17-33. · Zbl 1340.26011
[7] P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73, No 5 (2017), 794-803. · Zbl 1375.34115
[8] D. Chyan, S. Shaw, S. Piskarev, On maximal regularity and semivariation of cosine operator functions. J. London Math. Soc. 59, No 3 (1999), 1023-1032. · Zbl 0946.47030
[9] S. Das, Functional Fractional Calculus. Springer-Verlag, Berlin (2011). · Zbl 1225.26007
[10] A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62 (2011), 1442-1450. · Zbl 1228.45013
[11] K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010). · Zbl 1215.34001
[12] N. Dunford, J.T. Schwartz, Linear Operators, Part I. John Wiley & Sons, New York (1988).
[13] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014), 2nd ed. (2020). · Zbl 1451.33001
[14] A. Granas, J. Dugundji, Fixed Point Theory. Springer-Verlag, New York (2003). · Zbl 1025.47002
[15] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011), Art. ID 298628, 51 pp. · Zbl 1218.33021
[16] H.R. Henríquez, Introducción a la Integración Vectorial. Editorial Académica Española, ISBN: 978-3-659-04096-2, Saarbrücken (2012).
[17] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). · Zbl 0998.26002
[18] C.S. Hönig, The Green function of a linear differential equation with a lateral condition. Bull. Amer. Math. Soc. 79 (1973), 587-593. · Zbl 0279.34053
[19] C.S. Hönig, The Abstract Riemann-Stieltjes Integral and Its Applications to Linear Differential Equations With Generalized Boundary Conditions. Universidade de São Paulo, São Paulo (1973). · Zbl 0372.34038
[20] C.S. Hönig, Semigroups and semivariation. In: Proc. 14^∘ Seminário Brasileiro de Análise (1981), 185-193.
[21] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006). · Zbl 1092.45003
[22] F. Li, M. Li, On maximal regularity and semivariation of α-times resolvent families. Advances in Pure Math. 3 (2013), 680-684.
[23] A. Lopushansky, O. Lopushansky, A. Szpila, Fractional abstract Cauchy problem on complex interpolation scales. Fract. Calc. Appl. Anal. 23, No 4 (2020), 1125-1140; ; https://www.degruyter.com/journal/key/fca/23/4/html. · Zbl 1474.35663 · doi:10.1515/fca-2020-0057
[24] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London (2010). · Zbl 1210.26004
[25] F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, No 1-2 (2000), 283-299. · Zbl 0970.45005
[26] C.-M. Marle, Mesures et Probabilités. Hermann, Paris (1974). · Zbl 0306.28001
[27] Z.-D. Mei, J.-G. Peng, Y. Zhang, A characteristic of fractional resolvents. Fract. Calc. Appl. Anal. 16, No 4 (2013), 777-790; ; https://www.degruyter.com/journal/key/fca/16/4/html. · Zbl 1314.34022 · doi:10.2478/s13540-013-0048-1
[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). · Zbl 0516.47023
[29] M. Pierri, D. O’Regan, On non-autonomous abstract nonlinear fractional differential equations. Appl. Anal. 94, No 8 (2015), 879-890. · Zbl 1319.34015
[30] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. Vol. 198. Academic Press, Inc., San Diego (1999). · Zbl 0918.34010
[31] J. Prüss, Evolutionary Integral Equations and Applications. Monographs Math. Vol. 87, Birkhäuser Verlag, Basel (1993). · Zbl 0793.45014
[32] H. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem. J. Evol. Equ. 8, No 2 (2008), 283-305. · Zbl 1157.45007
[33] C.C. Travis, Differentiability of weak solutions to an abstract inhomogeneous differential equation. Proc. Amer. Math. Soc. 82, No 3 (1981), 425-430. · Zbl 0484.34044
[34] K. Zhang, Existence results for a generalization of the time-fractional diffusion equation with variable coefficients. Bound. Value Probl. 2019, No 10 (2019), 1-11. · Zbl 1524.35733
[35] Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21, No 3 (2018), 786-800; ; https://www.degruyter.com/journal/key/fca/21/3/html. · Zbl 1405.34012 · doi:10.1515/fca-2018-0041
[36] Y. Zhou, J.W. He, New results on controllability of fractional evolution systems with order α ∈ (1, 2). Evol. Equ. Control Theory. 10, No 3 (2021), 491-509. · Zbl 1481.34081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.