×

Path integrals for higher derivative actions. (English) Zbl 1509.46050

Summary: We consider Euclidean path integrals with higher derivative actions, including those that depend quadratically on acceleration, velocity and position. Such path integrals arise naturally in the study of stiff polymers, membranes with bending rigidity as well as a number of models for electrolytes. The approach used is based on the relation between quadratic path integrals and Gaussian fields and we also show how it can be extended to the evaluation of even higher order path integrals.

MSC:

46T12 Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds
60G17 Sample path properties

References:

[1] Kleinert H 1986 J. Math. Phys.27 3003 · Zbl 0615.58007 · doi:10.1063/1.527228
[2] Grosche C and Steiner F 1998 Handbook of Feynman Path Integrals (Berlin: Springer) · Zbl 1029.81045
[3] Papadopoulos G J 1968 J. Phys. A: Gen. Phys.1 431 · doi:10.1088/0305-4470/1/4/302
[4] Papadopoulos G J and Thomchick J 1977 J. Phys. A: Math. Gen.10 1115 · doi:10.1088/0305-4470/10/7/010
[5] Freed K F 1971 J. Chem. Phys.54 1453 · doi:10.1063/1.1675038
[6] Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Clarendon)
[7] Smith D A 2001 J. Phys. A: Math. Gen.34 4507 · Zbl 0973.82049 · doi:10.1088/0305-4470/34/21/307
[8] Dobnikar J and Podgornik R 2001 Europhys. Lett.53 735 · doi:10.1209/epl/i2001-00213-1
[9] Uchida N 2001 Phys. Rev. Lett.87 216101 · doi:10.1103/PhysRevLett.87.216101
[10] Dean D S and Horgan R R 2007 Phys. Rev. E 76 041102 · doi:10.1103/PhysRevE.76.041102
[11] Haddadan F K P, Naji A and Podgornik R 2019 Soft Matter15 2216 · doi:10.1039/C8SM02328J
[12] Simon J Z 1990 Phys. Rev. D 41 3720 · doi:10.1103/PhysRevD.41.3720
[13] Santangelo C D 2006 Phys. Rev. E 73 041512 · doi:10.1103/PhysRevE.73.041512
[14] Bazant M Z, Storey B D and Kornyshev A A 2011 Phys. Rev. Lett.106 046102 · doi:10.1103/PhysRevLett.106.046102
[15] Dean D S and Gopinathan A 2010 Phys. Rev. E 81 041126 · doi:10.1103/PhysRevE.81.041126
[16] Dean D S and Gopinathan A 2009 J. Stat. Mech. L08001 · Zbl 1459.82216 · doi:10.1088/1742-5468/2009/08
[17] Blossey R, Maggs A C and Podgornik R 2017 Phys. Rev. E 95 060602 · doi:10.1103/PhysRevE.95.060602
[18] Lancaster P and Rodman L 1995 Algebraic Riccati Equations (Oxford: Clarendon) · Zbl 0836.15005
[19] Popov V S and Perelomov A M 1969 J. Exp. Theor. Phys.30 910
[20] Gritsev V et al 2010 New J. Phys.12 113005 · Zbl 1448.82050 · doi:10.1088/1367-2630/12/11/113005
[21] Dean D S, Horgan R R, Naji A and Podgornik R 2009 Phys. Rev. A 79 040101 · doi:10.1103/PhysRevA.79.040101
[22] Dean D S, Horgan R R, Naji A and Podgornik R 2010 Phys. Rev. E 81 051117 · doi:10.1103/PhysRevE.81.051117
[23] Boyer D and Dean D S 2011 J. Phys. A: Math. Gen.44 335003 · Zbl 1226.82049 · doi:10.1088/1751-8113/44/33/335003
[24] Boyer D, Dean D S, Mejà-Monasterio C and Oshanin G 2012 Phys. Rev. E 85 031136 · doi:10.1103/PhysRevE.85.031136
[25] Dean D S, Le Doussal P, Majumdar S N and Schehr G 2019 Europhys. Lett.126 20006 · doi:10.1209/0295-5075/126/20006
[26] Dreyfus T and Dym H 1978 Duke Math. J.45 15 · Zbl 0387.34021 · doi:10.1215/S0012-7094-78-04502-7
[27] Chan T, Dean D S, Jansons K M and Rogers L C G 1994 Commun. Math. Phys.160 239 · Zbl 0790.60057 · doi:10.1007/BF02103275
[28] Dean D S and Jansons K M 1994 J. Stat. Phys.79 265 · Zbl 1081.82638 · doi:10.1007/BF02179390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.