×

The non-equilibrium behavior of pseudo-Casimir forces. (English) Zbl 1459.82216

Summary: While techniques for computing thermal fluctuation induced, or pseudo-Casimir, forces in equilibrium systems are well established, the same is not true for non-equilibrium cases. We present a general formalism that allows us to compute non-equilibrium fluctuation induced forces by specifying the energy of interaction of the fluctuating fields with the boundaries. For a general class of free classical fields with dissipative dynamics, we derive a very general relation between the Laplace transform of the time dependent force and the static partition function for a related problem with a different Hamiltonian. In particular, we demonstrate the power of our approach by computing the explicit time dependence of the non-equilibrium pseudo-Casimir force induced between two parallel plates, upon a sudden change in the temperature of the system. We also show how our results can be used to determine the steady state behavior of the non-equilibrium force in systems where the fluctuations are driven by colored noise.

MSC:

82C27 Dynamic critical phenomena in statistical mechanics

References:

[1] Kardar M and Golestanian R 1999 Rev. Mod. Phys.71 1233 · doi:10.1103/RevModPhys.71.1233
[2] Mostepanenko V M and Trunov N N 1997 The Casimir Effect and its Applications (Oxford: Oxford University Press)
[3] Milton K A 2001 The Casimir Effect: Physical Manifestations of Zero-Point Energy (Singapore: World Scientific) · Zbl 1025.81003 · doi:10.1142/9789812810526
[4] Fisher M E and de Gennes P G 1978 C. R. Acad. Sci. Paris B 287 207
[5] Hertlein C, Helden L, Gambassi A, Dietrich S and Bechinger C 2008 Nature451 172 · doi:10.1038/nature06443
[6] Garcia R and Chan M H W 1999 Phys. Rev. Lett.83 1187 · doi:10.1103/PhysRevLett.83.1187
[7] Ganshin A, Scheidemantel S, Garcia R and Chan M H W 2006 Phys. Rev. Lett.97 075301 · doi:10.1103/PhysRevLett.97.075301
[8] Maciolek A, Gambassi A and Dietrich S 2007 Phys. Rev. E 76 031124 · doi:10.1103/PhysRevE.76.031124
[9] Zandi R, Shackell A, Rudnick J, Kardar M and Chayes L P 2007 Phys. Rev. E 76 030601 · doi:10.1103/PhysRevE.76.030601
[10] Zandi R, Rudnick J and Kardar M 2004 Phys. Rev. Lett.93 155302 · doi:10.1103/PhysRevLett.93.155302
[11] Hucht A 2007 Phys. Rev. Lett.99 185301 · doi:10.1103/PhysRevLett.99.185301
[12] Vasilyev O, Gambassi A, Maciolek A and Dietrich S 2007 Europhys. Lett.80 60009 · doi:10.1209/0295-5075/80/60009
[13] Ajdari A, Peliti L and Prost J 1991 Phys. Rev. Lett.66 1481 · doi:10.1103/PhysRevLett.66.1481
[14] Bartolo D, Adjari A and Fournier J B 2003 Phys. Rev. E 67 061112 · doi:10.1103/PhysRevE.67.061112
[15] Najafi A and Golestanian R 2004 Europhys. Lett.68 776 · doi:10.1209/epl/i2004-10275-5
[16] Gambassi A and Dietrich S 2006 J. Stat. Phys.123 929 · Zbl 1103.82017 · doi:10.1007/s10955-006-9089-8
[17] Gambassi A 2008 Eur. Phys. J. B 64 379 · doi:10.1140/epjb/e2008-00043-y
[18] Bartolo D, Adjari A, Fournier J B and Golestanian R 2002 Phys. Rev. Lett.89 230601 · doi:10.1103/PhysRevLett.89.230601
[19] Brito R, Marini Bettolo Marconi U and Soto R 2007 Phys. Rev. E 76 011113 · doi:10.1103/PhysRevE.76.011113
[20] Buenzli P R and Soto R 2008 Phys. Rev. E 78 020102(R) · doi:10.1103/PhysRevE.78.020102
[21] Krech M and Dietrich S 1992 Phys. Rev. A 46 1886 · doi:10.1103/PhysRevA.46.1886
[22] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals Series and Products (New York: Academic) · Zbl 0981.65001
[23] Dean D S and Gopinathan A 2009 in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.