×

Nonlinear aspects of super weakly compact sets. (Aspects non linéaires des ensembles super faiblement compacts.) (English. French summary) Zbl 1509.46013

This interesting article is devoted to a natural property of subsets of Banach spaces which has recently attracted attention. A weakly closed subset \(A\) of a Banach space \(X\) is called super weakly compact (in short, SWC) if its ultrapowers are relatively weakly compact in \(X^\mathcal{U}\) for each free ultrafilter. As demonstrated in this article, this notion yields to a nice interplay between local and topological properties of Banach spaces, related with classical theorems of James and Bourgain. Moreover, natural examples illustrate the relevance of this class of sets.
Here is a sample of some striking results shown in this work. A Banach space \(X\) is generated by some SWC set \(A\) (that is, the linear span of \(A\) is dense in \(X\)) if and only if \(X\) has an equivalent strongly uniformly Gâteaux-smooth norm. If moreover \(A\) strongly generates \(X\), then there is an equivalent norm on \(X\) whose restriction to any reflexive subspace of \(X\) is uniformly smooth and uniformly convex (Theorem 2.5). This result applies for instance to \(L_1\) spaces, and it implies in particular that reflexive subspaces of such a space \(X\) are super-reflexive. A closed convex set \(C\) is SWC if and only if real-valued Lipschitz functions defined on \(C\) are uniform limits of differences of convex Lipschitz functions (Theorem 3.5), if and only if it is contained in a uniformly convex set (Proposition 4.2). The existence of a uniform sequence of metric graphs with rates of change in \(C\) is equivalent to the fact that \(C\) is not SWC, for various classes of graphs: binary trees, diamond graphs, Laakso graphs (Theorem 5.1). Finally, several examples are considered in the last section: in particular every weakly compact subset of \(L_1\) is SWC and the Banach-Saks property follows (Corollary 6.4). Moreover, SWC subsets of \(c_0\) are investigated, and the Sauer-Shelah lemma provides a necessary condition on such sets (Proposition 6.5).

MSC:

46B50 Compactness in Banach (or normed) spaces
46B80 Nonlinear classification of Banach spaces; nonlinear quotients
46B08 Ultraproduct techniques in Banach space theory
46A50 Compactness in topological linear spaces; angelic spaces, etc.

References:

[1] Albiac, Fernando; Kalton, Nijel J., Topics in Banach Space Theory, 233 (2016), Springer · Zbl 1352.46002 · doi:10.1007/978-3-319-31557-7
[2] Alon, Noga M.; Spencer, Joel H., The probabilistic method (2016), John Wiley & Sons · Zbl 1333.05001
[3] Barton, Thomas J.; Timoney, Richard M., \(Weak^*\)-continuity of Jordan triple products and its applications, Math. Scand., 59, 2, 177-191 (1986) · Zbl 0621.46044 · doi:10.7146/math.scand.a-12160
[4] Baudier, Florent, Metrical characterization of super-reflexivity and linear type of Banach spaces, Arch. Math., 89, 5, 419-429 (2007) · Zbl 1142.46007 · doi:10.1007/s00013-007-2108-4
[5] Beauzamy, Bernard, Opérateurs uniformément convexifiants, Stud. Math., 57, 2, 103-139 (1976) · Zbl 0372.46016 · doi:10.4064/sm-57-2-103-139
[6] Beauzamy, Bernard, Introduction to Banach spaces and their geometry, 68 (1982), North-Holland · Zbl 0491.46014
[7] Benyamini, Yoar; Lindenstrauss, Joram, Geometric Nonlinear Functional Analysis, 48 (2000), American Mathematical Society · Zbl 0946.46002
[8] Bohata, Martin; Hamhalter, Jan; Kalenda, Ondřej F. K.; Peralta, Antonio M.; Pfitzner, Hermann, Preduals of \(JBW^*\)-triples are \(1\)-Plichko spaces, Q. J. Math., 69, 2, 655-680 (2018) · Zbl 1406.46005 · doi:10.1093/qmath/hax057
[9] Bourgain, Jean, The metrical interpretation of super-reflexivity in Banach spaces, Isr. J. Math., 56, 222-230 (1986) · Zbl 0643.46013 · doi:10.1007/BF02766125
[10] Causey, Ryan M.; Dilworth, Stephen J., Metric characterizations of super weakly compact operators, Stud. Math., 239, 2, 175-188 (2017) · Zbl 1393.46016 · doi:10.4064/sm8645-3-2017
[11] Cepedello-Boiso, Manuel, Approximation of Lipschitz functions by \(\Delta \)-convex functions in Banach spaces, Isr. J. Math., 106, 269-284 (1998) · Zbl 0920.46010
[12] Cheng, Lixin; Cheng, Qingjin; Luo, Sijie; Tu, Kun; Zhang, Jichao, On super weak compactness of subsets and its equivalences in Banach spaces, J. Convex Anal., 25, 3, 899-926 (2018) · Zbl 1408.46014
[13] Cheng, Lixin; Cheng, Qingjin; Wang, Bo; Zhang, Wen, On super-weakly compact sets and uniformly convexifiable sets, Stud. Math., 199, 2, 145-169 (2010) · Zbl 1252.46009 · doi:10.4064/sm199-2-2
[14] Deville, Robert; Godefroy, Gilles; Zizler, Václav, Smoothness and renormings in Banach spaces, 64 (1993), Longman Scientific & Technical · Zbl 0782.46019
[15] Diestel, Joseph, Geometry of Banach spaces. Selected topics, 485 (1975), Springer · Zbl 0307.46009 · doi:10.1007/BFb0082079
[16] Fabian, Marián; Habala, Petr; Hájek, Petr; Montesinos, Vicente; Zizler, Václav, Banach Space Theory. The Basis for Linear and Nonlinear Analysis (2011), Springer · Zbl 1229.46001
[17] Hamhalter, Jan; Kalenda, Ondřej F. K.; Peralta, Antonio M.; Pfitzner, Hermann, Measures of weak non-compactness in preduals of von Neumann algebras and \(JBW^*\)-triples, J. Funct. Anal., 278, 1 (2020) · Zbl 1444.46017
[18] James, Robert C., Weak compactness and reflexivity, Isr. J. Math., 2, 101-119 (1964) · Zbl 0127.32502 · doi:10.1007/BF02759950
[19] Johnson, Williams B.; Schechtman, Gideon, Diamond graphs and super-reflexivity, J. Topol. Anal., 1, 2, 177-189 (2009) · Zbl 1183.46022 · doi:10.1142/S1793525309000114
[20] Kadec, Mikhail I., Unconditional convergence of series in uniformly convex spaces, Usp. Mat. Nauk, 11, 185-190 (1956) · Zbl 0072.12004
[21] Kaup, Wilhelm G., Contractive projections on Jordan \({C}^*\)-algebras and generalizations, Math. Scand., 54, 1, 95-100 (1984) · Zbl 0578.46066 · doi:10.7146/math.scand.a-12043
[22] Kloeckner, Benoît, Yet another short proof of Bourgain’s distortion estimate for embedding of trees into uniformly convex Banach spaces, Isr. J. Math., 200, 1, 419-422 (2014) · Zbl 1314.46028 · doi:10.1007/s11856-014-0024-4
[23] Lancien, Gilles, Théorie de l’indice et problèmes de renormage en géométrie des espaces de Banach (1992)
[24] Lancien, Gilles, On uniformly convex and uniformly Kadec-Klee renormings, Serdica Math. J., 21, 1, 1-18 (1995) · Zbl 0837.46011
[25] Pisier, Gilles, Martingales with values in uniformly convex spaces, Isr. J. Math., 20, 326-350 (1975) · Zbl 0344.46030 · doi:10.1007/BF02760337
[26] Polyak, Boris T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math., Dokl., 7, 72-75 (1966) · Zbl 0171.09501
[27] Raja, Matias, Finitely dentable functions, operators and sets, J. Convex Anal., 15, 2, 219-233 (2008) · Zbl 1183.46018
[28] Raja, Matias, Super WCG Banach spaces, J. Math. Anal. Appl., 439, 1, 183-196 (2016) · Zbl 1351.46010 · doi:10.1016/j.jmaa.2016.02.057
[29] Rodriguez, José, Cesàro convergent sequences in the Mackey topology, Mediterr. J. Math., 16, 5 (2019) · Zbl 1427.46007
[30] Swift, Andrew, A coding of bundle graphs and their embeddings into Banach spaces, Mathematika, 64, 3, 847-874 (2018) · Zbl 1409.46016 · doi:10.1112/S002557931800027X
[31] Szlenk, Wieslaw, Sur les suites faiblement convergentes dans l’espace \({L}\), Stud. Math., 25, 337-341 (1965) · Zbl 0131.11505 · doi:10.4064/sm-25-3-337-341
[32] Tu, Kun, Convexification of super weakly compact sets and measure of super weak noncompactness, Proc. Am. Math. Soc., 149, 6, 2531-2538 (2021) · Zbl 1471.46005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.