×

Diamond graphs and super-reflexivity. (English) Zbl 1183.46022

The main result of the paper is: A Banach space \(X\) is not super-reflexive if and only if the diamond graphs \(D_n\) Lipschitz embed into \(X\) with distortions independent of \(n\), and a similar result for Laakso graphs. Diamond graphs are defined in the following way: the first diamond graph \(D_0\) is a graph with two vertices and one edge between them. Each next diamond graph is obtained from the previous one if we replace each of the edges in the previous graph by a \(4\)-cycle with two of its opposite vertices being the end vertices of the edge and the two remaining vertices being new vertices. It seems that the diamond graphs were for the first time introduced into metric geometry in the paper of [A.Gupta, I.Newman, Y.Rabinovich and A.Sinclair, “Cuts, trees and \(\ell_1\)-embeddings of graphs”, Combinatorica 24, No.2, 233–269 (2004; Zbl 1056.05040)]. Laakso graphs are defined similarly, in a slightly more complicated way, they were introduced in [T.J.Laakso, Geom.Funct.Anal.10, No.1, 111–123 (2000); erratum ibid.12, 650 (2002; Zbl 0962.30006)]. Laakso graphs are of interest in the present context because they have uniformly bounded geometry and are uniformly doubling.
A similar characterization in terms of dyadic binary trees was obtained by J.Bourgain [Isr.J.Math.56, 222–230 (1986; Zbl 0643.46013)]; an “infinite” version of Bourgain’s characterization was found by F.Baudier [Arch.Math.89, No.5, 419–429 (2007; Zbl 1142.46007)].
One of the consequences of the result on diamond graphs and previously known results is that dimension reduction in the spirit of the paper [W.B.Johnson and J.Lindenstrauss, Contemp.Math.26, 189–206 (1984; Zbl 0539.46017)] fails in any non-super-reflexive space with non trivial type.
The authors also introduce the concept of Lipschitz \((p,r)\)-summing map and prove that every Lipschitz mapping is Lipschitz \((p,r)\)-summing for every \(1\leq r < p\). This result contrasts with a recent result of J.Farmer and W.B.Johnson [Proc.Am.Math.Soc.137, No.9, 2989–2995 (2009; Zbl 1183.46020)] where is was proved that a bounded linear operator is Lipschitz \(p\)-summing if and only if it is \(p\)-summing.

MSC:

46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
05C12 Distance in graphs
46B07 Local theory of Banach spaces
46B10 Duality and reflexivity in normed linear and Banach spaces
Full Text: DOI

References:

[1] DOI: 10.1007/BF01231769 · Zbl 0803.47037 · doi:10.1007/BF01231769
[2] Benyamini Y., Geometric Nonlinear Functional Analysis 48 (2000) · Zbl 0946.46002
[3] DOI: 10.1007/BF02776078 · Zbl 0657.46013 · doi:10.1007/BF02776078
[4] DOI: 10.1007/BF02766125 · Zbl 0643.46013 · doi:10.1007/BF02766125
[5] DOI: 10.1145/1089023.1089026 · Zbl 1310.68199 · doi:10.1145/1089023.1089026
[6] DOI: 10.1017/CBO9780511526138 · doi:10.1017/CBO9780511526138
[7] Figiel T., Studia Math. 56 pp 121–
[8] DOI: 10.1007/s00493-004-0015-x · Zbl 1056.05040 · doi:10.1007/s00493-004-0015-x
[9] DOI: 10.1007/BF02759950 · Zbl 0127.32502 · doi:10.1007/BF02759950
[10] DOI: 10.1007/BF02760825 · Zbl 0384.46004 · doi:10.1007/BF02760825
[11] Kwapień S., Studia Math. 34 pp 43–
[12] DOI: 10.1007/s000390050003 · Zbl 0962.30006 · doi:10.1007/s000390050003
[13] DOI: 10.1007/BF01200757 · Zbl 0827.05021 · doi:10.1007/BF01200757
[14] DOI: 10.1016/j.ejc.2004.07.002 · Zbl 1106.68086 · doi:10.1016/j.ejc.2004.07.002
[15] Lee J. R., Geom. Funct. Anal. 14 pp 745–
[16] DOI: 10.1023/A:1012093209450 · Zbl 1024.54013 · doi:10.1023/A:1012093209450
[17] Lindenstrauss J., Studia Math. 29 pp 275–
[18] DOI: 10.1007/BF02784132 · Zbl 0987.46022 · doi:10.1007/BF02784132
[19] Milman V. D., Springer Lecture Notes in Mathematics 1200, in: Asymptotic Theory of Finite Dimensional Normed Spaces (1986)
[20] DOI: 10.1007/BF02762002 · Zbl 0374.46013 · doi:10.1007/BF02762002
[21] DOI: 10.1007/BF02760337 · Zbl 0344.46030 · doi:10.1007/BF02760337
[22] DOI: 10.1007/BFb0078146 · doi:10.1007/BFb0078146
[23] DOI: 10.4064/fm187-3-3 · Zbl 1096.54007 · doi:10.4064/fm187-3-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.