×

Painlevé/CFT correspondence on a torus. (English) Zbl 1509.34100

Summary: This Review details the relationship between the isomonodromic tau-function and conformal blocks on a torus with one simple pole. It is based on the author’s talk at ICMP 2021.
©2022 American Institute of Physics

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
34M56 Isomonodromic deformations for ordinary differential equations in the complex domain

Software:

DLMF

References:

[1] Gamayun, O.; Iorgov, N.; Lisovyy, O., Conformal field theory of Painlevé VI, J. High Energy Phys., 2012, 10, 38, 10.1007/jhep10(2012)038; Gamayun, O.; Iorgov, N.; Lisovyy, O., Conformal field theory of Painlevé VI, J. High Energy Phys., 2012, 10, 38, 10.1007/jhep10(2012)183; · Zbl 1397.81307
[2] Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé/gauge theory correspondence, Lett. Math. Phys., 107, 2359-2413 (2017) · Zbl 1380.34130 · doi:10.1007/s11005-017-0983-6
[3] Gamayun, O.; Iorgov, N.; Lisovyy, O., How instanton combinatorics solves Painlevé VI, V and III’s, J. Phys. A: Math. Theor., 46, 335203 (2013) · Zbl 1282.34096 · doi:10.1088/1751-8113/46/33/335203
[4] Cafasso, M.; Gavrylenko, P.; Lisovyy, O., Tau functions as widom constants, Commun. Math. Phys., 365, 741-772 (2019) · Zbl 1417.37245 · doi:10.1007/s00220-018-3230-9
[5] Gavrylenko, P.; Lisovyy, O., Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, Commun. Math. Phys., 363, 1-58 (2018) · Zbl 1414.34072 · doi:10.1007/s00220-018-3224-7
[6] Gavrylenko, P.; Lisovyy, O., Pure SU(2) gauge theory partition function and generalized Bessel kernel (2018) · Zbl 1448.34163
[7] Del Monte, F.; Desiraju, H.; Gavrylenko, P., Isomonodromic tau functions on a torus as Fredholm determinants, and charged partitions (2020)
[8] Fuchs, R., Sur Quelques Équations Différentielles Linéaires du Second Ordre (1905), Gauthier-Villars · JFM 36.0397.02
[9] Gambier, B., Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, Acta Math., 33, 1-55 (1910) · JFM 40.0377.02 · doi:10.1007/bf02393211
[10] Painlevé, P., Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sci. Paris, 143, 1111-1117 (1906) · JFM 37.0341.04
[11] Picard, E., Mémoire sur la théorie des fonctions algébriques de deux variables, J. Math. Pures Appl., 5, 135-320 (1889) · JFM 21.0775.01
[12] Flaschka, H.; Newell, A. C., Monodromy- and spectrum-preserving deformations I, Commun. Math. Phys., 76, 65-116 (1980) · Zbl 0439.34005 · doi:10.1007/bf01197110
[13] Garnier, R., Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Ann. Sci. Ec. Norm. Super., 29, 1-126 (1912) · JFM 43.0382.01 · doi:10.24033/asens.644
[14] Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformations of linear differential equations with rational coefficients: I. General theory and τ-function, Physica D, 2, 306-352 (1981) · Zbl 1194.34167 · doi:10.1016/0167-2789(81)90013-0
[15] Forrester, P. J.; Witte, N. S., Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE, Commun. Math. Phys., 219, 357-398 (2001) · Zbl 1042.82019 · doi:10.1007/s002200100422
[16] See Ref. 38 Eq. (32.6) for a comprehensive list.
[17] Okamoto, K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV, Math. Ann., 275, 221-255 (1986) · Zbl 0589.58008 · doi:10.1007/bf01458459
[18] Harnad, J.; Balogh, F., Tau Functions and Their Applications (2021), Cambridge University Press · Zbl 1482.37001
[19] Its, A. R.; Prokhorov, A., On some Hamiltonian properties of the isomonodromic tau functions, Rev. Math. Phys., 30, 1840008 (2018) · Zbl 1408.30036 · doi:10.1142/s0129055x18400081
[20] Bertola, M., The Malgrange form and Fredholm determinants, Symmetry, Integrability Geom.: Methods Appl., 13, 46-12 (2017) · Zbl 1374.35274 · doi:10.3842/sigma.2017.046
[21] Malgrange, B., Déformations isomonodromiques des singularités réguliéres, 1-26 (1983) · Zbl 0528.32017
[22] Sato, M.; Miwa, T.; Jimbo, M., Studies on holonomic quantum fields, I, Proc. Jpn. Acad., Ser. A, 53, 6-10 (1977) · doi:10.3792/pjaa.53.6
[23] Alday, L. F.; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167-197 (2010) · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[24] Desiraju, H., The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a widom constant, J. Math. Phys., 60, 113505 (2019) · Zbl 1431.34096 · doi:10.1063/1.5120357
[25] Desiraju, H., Fredholm determinant representation of the homogeneous Painlevé II τ-function, Nonlinearity, 34, 6507 (2021) · Zbl 1486.34171 · doi:10.1088/1361-6544/abf84a
[26] Goldman, W., Trace coordinates on Fricke spaces of some simple hyperbolic surfaces (2009) · Zbl 1175.30043
[27] Bertola, M., Padé approximants on Riemann surfaces and KP tau functions, Anal. Math. Phys., 11, 149 (2021) · Zbl 1478.37074 · doi:10.1007/s13324-021-00585-2
[28] Bikbaev, R. F.; Its, A. R., Asymptotics at t → ∞ of the solution of the cauchy problem for the Landau-Lifshitz equation, Theor. Math. Phys., 76, 665-675 (1988) · doi:10.1007/bf01029424
[29] Rodin, Y., The Riemann Boundary Problem on Riemann Surfaces (2013), Springer Science & Business Media
[30] Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A., gauge theory, free fermions on the torus and Painlevé VI, Commun. Math. Phys., 377, 1381-1419 (2020) · Zbl 1444.37055 · doi:10.1007/s00220-020-03743-y
[31] The reason behind this is computational and is detailed in Refs. 5 and 7.
[32] For the ease of notation, we the keep the notation of the kernels \(\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \).
[33] The explicit form of the Fourier coefficients \(\mathsf{a}_{s; \beta}^{- r; \alpha}, \mathsf{b}_{- s; \beta}^{- r; \alpha}, \mathsf{c}_{s; \beta}^{r; \alpha}, \mathsf{d}_{- s; \beta}^{r; \alpha}\) is not relevant for the purposes of this Review but is computed in Ref. 5.
[34] Since s ∈ I, the hole positions in the corresponding Maya diagram m are \(\mathsf{h}(\mathsf{m}) = \left\{- s_1, \ldots, - s_k\right\} \), and since r ∈ J, the particle positions are \(\mathsf{p}(\mathsf{m}) = \left\{r_1, \ldots, r_l\right\} \).
[35] Gavrylenko, P.; Iorgov, N.; Lisovyy, O., On solutions of the Fuji-Suzuki-Tsuda system, SIGMA, 14, 123 (2018) · Zbl 1412.34243 · doi:10.3842/sigma.2018.123
[36] Refer to Eq. (2.45) in Ref. 7 for the full computation.
[37] Fateev, V.; Litvinov, A., On AGT conjecture, J. High Energy Phys., 2010, 14 · Zbl 1270.81203 · doi:10.1007/jhep02(2010)014
[38] DLMF, NIST Digital Library of Mathematical Functions, edited by Olver, F. W. J., Daalhuis, A. B. O., Lozier, D. W., Schneider, B. I., Boisvert, R. F., Clark, C. W., Miller, B. R., Saunders, B. V., Cohl, H. S., and McClain, M. A..
[39] Bershtein, M.; Gavrylenko, P.; Grassi, A., Quantum spectral problems and isomonodromic deformations · Zbl 1507.81089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.