×

Amenability, Reiter’s condition and Liouville property. (English) Zbl 1509.22002

Summary: We show that the Liouville property and Reiter’s condition are equivalent for semigroupoids. This result applies to semigroups as well as semigroup actions. In the special case of measured groupoids and locally compact groupoids, our result proves Kaimanovich’s conjecture of the equivalence of amenability and the Liouville property.

MSC:

22A22 Topological groupoids (including differentiable and Lie groupoids)
43A05 Measures on groups and semigroups, etc.
43A07 Means on groups, semigroups, etc.; amenable groups
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
46E27 Spaces of measures

References:

[1] Anantharaman-Delaroche, C.; Renault, J., Amenable Groupoids, L’Enseignement Math., vol. 36 (2000), Geneva · Zbl 0960.43003
[2] Arveson, W., An Invitation to C*-Algebra (1976), Springer: Springer New York · Zbl 0344.46123
[3] Azencott, R., Espaces de Poisson des groupes localement compacts, LNM, vol. 148 (1970), Springer: Springer Berlin · Zbl 0239.60008
[4] Chu, C.-H., Matrix-valued harmonic functions on groups, J. Reine Angew. Math., 552, 15-52 (2002) · Zbl 1011.31004
[5] Chu, C.-H.; Hilberdink, T., The convolution equation of Choquet and Deny on nilpotent groups, Integral Equations Operator Theory, 26, 1-13 (1996) · Zbl 0878.43001
[6] Chu, C.-H.; Lau, A. T.-M., Harmonic functions on topological groups and symmetric spaces, Math. Z., 268, 649-673 (2011) · Zbl 1222.43001
[7] C.-H. Chu, X. Li, Harmonic functions on semigroups, in preparation.; C.-H. Chu, X. Li, Harmonic functions on semigroups, in preparation.
[8] Connes, A., Sur la théorie non commutative de l’intégration, Lecture Notes in Math., vol. 725, 19-143 (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0412.46053
[9] Connes, A., Von Neumann algebras, (Proc. ICM, Helsinki, 1978 (1980), Acad. Sci. Fennica: Acad. Sci. Fennica Helsinki), 97-109 · Zbl 0441.46052
[10] Cuntz, J.; Deninger, C.; Laca, M., C*-algebras of Toeplitz type associated with algebraic number fields, Math. Ann., 355, 1383-1423 (2013) · Zbl 1273.22008
[11] Davies, L.; Shanbhag, D. N., A generalization of a theorem of deny with applications in characterization problems, Quart. J. Math., 38, 13-34 (1987) · Zbl 0617.60016
[12] Day, M. M., Amenable semigroups, Illinois J. Math., 1, 509-544 (1957) · Zbl 0078.29402
[13] Dynkin, E. B.; Malyutov, M. B., Random walks on groups with a finite number of generators, Sov. Math., Dokl., 2, 399-402 (1961) · Zbl 0214.44101
[14] Elliott, G. A., The classification problem for amenable C*-algebras, (Proc. ICM, Zürich, 1994 (1995), Birkhäuser: Birkhäuser Basel), 922-932 · Zbl 0946.46050
[15] Folland, G., A Course in Abstract Harmonic Analysis (1995), CRC Press: CRC Press Boca Raton · Zbl 0857.43001
[16] Furstenberg, H., Boundary theory and stochastic processes on homogeneous spaces, (Harmonic Analysis on Homogeneous Spaces. Harmonic Analysis on Homogeneous Spaces, Proc. Symp. Pure Math., 1972 (1973), AMS: AMS Providence, R.I.), 193-229 · Zbl 0289.22011
[17] Higson, N.; Roe, J., Amenable group actions and the Novikov conjecture, J. Reine Angew. Math., 519, 143-153 (2000) · Zbl 0964.55015
[18] Hunt, G. A., Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc., 81, 263-293 (1956) · Zbl 0073.12402
[19] Kaimanovich, V. A., Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, (Harmonic Analysis and Discrete Potential Theory. Harmonic Analysis and Discrete Potential Theory, Frascati, 1991 (1992), Plenum: Plenum New York), 145-180
[20] Kaimanovich, V. A., Amenability and the Liouville property, Israel J. Math., 149, 45-85 (2004) · Zbl 1080.43003
[21] Kaimanovich, V. A.; Vershik, A. M., Random walks on discrete groups: boundary and entropy, Ann. Probab., 11, 457-490 (1983) · Zbl 0641.60009
[22] Kuratowski, K., Topology, Vol. I (1966), Academic Press: Academic Press New York · Zbl 0158.40901
[23] Lau, A., Amenability of semigroups, (The Analytical and Topological Theory of Semigroups. The Analytical and Topological Theory of Semigroups, De Gruyter Exp. Math., vol. 1 (1990), de Gruyter: de Gruyter Berlin), 313-334 · Zbl 0713.43002
[24] Lau, K.-S.; Zeng, W.-B., The convolution equation of Choquet and Deny on semigroups, Studia Math., 97, 115-135 (1990) · Zbl 0719.43002
[25] Li, X., Semigroup C*-algebras and amenability of semigroups, J. Funct. Anal., 262, 4302-4340 (2012) · Zbl 1243.22006
[26] Li, X., Nuclearity of semigroup C*-algebras and the connection to amenability, Adv. Math., 244, 626-662 (2013) · Zbl 1293.46030
[27] Mal’cev, A. I., Nilpotent semigroups, Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Nauki, 4, 107-111 (1953) · Zbl 0087.25501
[28] Margulis, G. A., Positive harmonic functions on nilpotent groups, Sov. Math., Dokl., 166, 241-244 (1966) · Zbl 0187.38902
[29] Namioka, I., On certain actions of semi-groups on L-spaces, Studia Math., 29, 63-77 (1967) · Zbl 0232.22009
[30] Ozawa, N., Amenable actions and applications, (Proc. of the ICM. Proc. of the ICM, Madrid, 2006, vol. II (2007), EMS Publishing House), 1624-1650
[31] Parathasarathy, K. R., Probability Measures on Metric Spaces (2005), AMS Chelsea Publ.: AMS Chelsea Publ. Providence, R.I. · Zbl 1188.60001
[32] Rao, C. R.; Shanbhag, D. N., Further extensions of the Choquet-Deny and Deny Theorems with applications in characterization theory, Quart. J. Math., 40, 333-350 (1989) · Zbl 0695.60021
[33] Rao, C. R.; Shanbhag, D. N., An elementary proof for an extended version of the Choquet-Deny theorem, J. Multivariate Anal., 38, 141-148 (1991) · Zbl 0732.60009
[34] Renault, J., A Groupoid Approach to C*-Algebras, Lect. Notes Math., vol. 793 (1980), Springer: Springer Berlin · Zbl 0433.46049
[35] Renault, J., Topological amenability is a Borel property, Math. Scand., 117, 5-30 (2015) · Zbl 1330.22015
[36] Rosenblatt, J., Ergodic and mixing random walks on locally compact groups, Math. Ann., 257, 31-42 (1981) · Zbl 0451.60011
[37] Tu, J-L., La conjecture de Baum-Connes pour les feuilletages moyennables, K-Theory, 17, 215-264 (1999) · Zbl 0939.19001
[38] von Neumann, J., Zur allgemeinen Theorie des Masses, Fund. Math., 13, 73-116 (1929) · JFM 55.0151.01
[39] Yau, S.-T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28, 201-228 (1975) · Zbl 0291.31002
[40] Zimmer, R. J., Hyperfinite factors and amenable ergodic actions, Invent. Math., 41, 23-31 (1977) · Zbl 0361.46061
[41] Zimmer, R. J., Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal., 27, 350-372 (1978) · Zbl 0391.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.