×

Matrix-valued harmonic functions on groups. (English) Zbl 1011.31004

The authors study the basic structures of matrix-valued harmonic functions on locally compact groups. They show that the bounded matrix-valued harmonic functions on a group form a Jordan triple system and they determine its structure. They also show that Liouville property implies amenability of the group. They characterize the unbounded matrix-valued harmonic functions on abelian groups.

MSC:

31C05 Harmonic, subharmonic, superharmonic functions on other spaces
43A70 Analysis on specific locally compact and other abelian groups
22D05 General properties and structure of locally compact groups
17A40 Ternary compositions
Full Text: DOI

References:

[1] R. Azencott, Espaces de Poisson des groupes localement compacts, Lect. Notes Math. 148, Springer-Verlag, Berlin 1970. · Zbl 0239.60008
[2] R., Stud. Math. 15 pp 337– (1956)
[3] Abh. Math. Semin. Univ. Hamburg 11 pp 116– (1935)
[4] Choquet G., . Paris 250 pp 779– (1960)
[5] G. Choquet, Lectures on analysis, Vol. I, II, W.A. Benjamin, New York 1969.
[6] C.H. Chu, Jordan structures in Banach manifolds, Stud. Adv. Math. 20, Amer. Math. Soc. (2001), 201-210. · Zbl 1051.58003
[7] Chu C.-H., Integr. Equat. Oper. Th. 26 pp 1– (1996)
[8] Chu C.-H., Proc. Amer. Math. Soc. 129 pp 229– (2001)
[9] C.H. Chu and A. T. M. Lau, Harmonic functions on groups and Fourier algebras, Lect. Notes Math. 1782, Springer-Verlag, Heidelberg 2002. · Zbl 1009.43001
[10] Chu C.-H., J. Oper. Th. 32 pp 157– (1994)
[11] Chu C.-H., Integr. Equat. Oper. Th. 40 pp 391– (2001)
[12] Chu C.-H., J. London Math. Soc. 55 pp 515– (1997)
[13] E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, Cambridge 1989. · Zbl 0699.35006
[14] J. Deny, Sur l’equation de convolution m s m, Sem. Th. Pot. M. Brelot, Paris 1960.
[15] J. Diestel and J. J. Uhl, Vector measures, Math. Surv.15, Amer. Math. Soc., 1977. · Zbl 0369.46039
[16] J. Dixmier, C*-algebras, North-Holland Publishing Co., Amsterdem-New York-Oxford 1982.
[17] N. Dunford and J. T. Schwartz, Linear operators I, J. Wiley Sons, New York1988.
[18] Ehrenpreis L., Amer. J. Math. 77 pp 293– (1955)
[19] R., Proc. Camb. Phil. Soc. 61 pp 617– (1965)
[20] M. Frank, Self-duality and C*-reflexivity of Hilbert C*-moduli, Z. Anal. Anw. 9 (1990), 165-176.
[21] Friedman Y., J. Funct. Anal. 60 pp 56– (1985)
[22] H. Furstenberg, Boundaries ofRiemannian symmetric spaces, in: Symmetric spaces (W. M. Boothby and G. L. Weiss, eds.), Marcel Dekker, New York (1972), 359-377.
[23] J., Amer. J. Math. 88 pp 626– (1966)
[24] Mem. Amer. Math. Soc. pp 16– (1955)
[25] G. Horn, Classification of JBW*-triples of type I, Math. Z. 196 (1987), 271-291. · Zbl 0615.46045
[26] G., Trans. Amer. Math. Soc. 81 pp 264– (1956)
[27] Sci. Rep. Niigata Univ. Ser. 11 pp 21– (1974)
[28] Kaimanovich V. A., Ann. Prob. 11 pp 457– (1983)
[29] Math. Z. 138 pp 503– (1983)
[30] Kaup W., Math. Scand. 54 pp 95– (1984)
[31] J. L. Kelley, I. Namioka et al., Linear topological spaces, Van Nostrand, Princeton 1963. · Zbl 0318.46001
[32] Kwada Y., Proc. Phys. Math. Soc. Japan 22 pp 977– (1940)
[33] Lau K.-S., Stud. Math. 117 pp 1– (1995)
[34] Lefranc M., R. Acad. Sci. Paris 246 pp 1951– (1958)
[35] Ann. Inst. Fourier 6 pp 271– (1955)
[36] R. R. Phelps, Lectures on Choquet’s Theorem, Van Nostrand, Princeton1966. · Zbl 0172.15603
[37] Math. Ann. 257 pp 31– (1981)
[38] W. Rudin, Real and complex analysis, McGraw-Hill, New York 1969. · Zbl 0954.26001
[39] B. Russo, Structures of JB*-triples, Proc. Oberwolfach conf. (1992) on Jordan algebras, Walter de Gruyter, Berlin (1994), 209-280. · Zbl 0805.46072
[40] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin1971.
[41] Ann. Math. 48 pp 857– (1947)
[42] L., Acta. Sci. Math. 44 pp 99– (1982)
[43] H. Upmeier, SymmetricBanach manifolds and Jordan C*-algebras, North-Holland, Amsterdam 1985. School of Mathematical Sciences, Queen Mary, University of London.London E1 4NS, England
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.