×

Perpetual American standard and lookback options with event risk and asymmetric information. (English) Zbl 1508.91559

The subject of the paper are deriving closed-form solutions to the perpetual American standard and floating-strike lookback put and call options in an extension of the Black-Merton-Scholes model with event risk and asymmetric information (see [A. Grorud and M. Pontier, Int. J. Theor. Appl. Finance 1, No. 3, 331–347 (1998; Zbl 0909.90023); J. Amendinger et al., Stochastic Processes Appl. 75, No. 2, 263–286 (1998; Zbl 0934.91020)] for research on models with insider information). In addition, the work assumes additional knowledge about local extremes of quotations in accordance with the observations made by practitioners that the contracts are terminated by their writers with linear or fractional recoveries at the last hitting times for the underlying asset price process of its ultimate maximum or minimum over the infinite time interval which are not stopping times with respect to the reference filtration. In such case, as it is proved in the article, the optimal exercise times for the holders are the first times at which the asset price reaches some lower or upper stochastic boundaries depending on the current values of its running maximum or minimum. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. The optimal exercise boundaries are proven to be the maximal or minimal solutions of some first-order nonlinear ordinary differential equations.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60G40 Stopping times; optimal stopping problems; gambling theory
35R35 Free boundary problems for PDEs
60J60 Diffusion processes
Full Text: DOI

References:

[1] J. Amendinger, P. Imkeller, and M. Schweizer, Additional logarithmic utility of an insider, Stochastic Process. Appl., 75 (1998), pp. 263-286. · Zbl 0934.91020
[2] S. Ankirchner, S. Dereich, and P. Imkeller, The Shannon information of filtrations and the additional logarithmic utility of insiders, Ann. Probab., 34 (2006), pp. 743-778. · Zbl 1098.60065
[3] A. Aksamit and M. Jeanblanc, Enlargement of Filtration with Finance in View, Springer, Berlin, 2017. · Zbl 1397.91003
[4] A. Aksamit, L. Li, and M. Rutkowski(2021), Generalized BSDEs with Random Time Horizon in a Progressively Enlarged Filtration, preprint, arXiv:2105.06654.
[5] S. Asmussen, F. Avram, and M. Pistorius, Russian and American put options under exponential phase-type Lévy models, Stochastic Process. Appl., 109 (2003), pp. 79-111. · Zbl 1075.60037
[6] F. Avram, A. E. Kyprianou, and M. Pistorius, Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options, Ann. Appl. Probab., 14 (2004), pp. 215-238. · Zbl 1042.60023
[7] M. T. Barlow, Study of filtration expanded to include an honest time, Z. Wahrscheinlichkeitstheorie verwandte Gebiete, 44 (1978), pp. 307-323. · Zbl 0369.60047
[8] E. J. Baurdoux and A. E. Kyprianou, The Shepp-Shiryaev stochastic game driven by a spectrally negative Lévy process, Theory Probab. Appl., 53 (2009), pp. 481-499. · Zbl 1209.91034
[9] M. Beibel and H. R. Lerche, A new look at warrant pricing and related optimal stopping problems, Statist. Sinica, 7 (1997), pp. 93-108. · Zbl 0895.60048
[10] T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, 2nd ed., Springer, Berlin, 2004. · Zbl 1134.91023
[11] A. N. Borodin and P. Salminen, Handbook of Brownian Motion, 2nd ed., Birkhäuser, Basel, 2002. · Zbl 1012.60003
[12] J. Detemple, American-Style Derivatives: Valuation and Computation, Chapman and Hall/CRC, Boca Raton, FL, 2006. · Zbl 1095.91015
[13] L. Dubins, L. A. Shepp, and A. N. Shiryaev, Optimal stopping rules and maximal inequalities for Bessel processes, Theory Probab. Appl., 38 (1993), pp. 226-261. · Zbl 0807.60040
[14] R. Dumitrescu, M. C. Quenez, and A. Sulem, American options in an imperfect complete market with default, ESAIM Proc. Surveys, 64 (2018), pp. 93-110. · Zbl 1419.91612
[15] N. Esmaeeli and P. Imkeller, American options with asymmetric information and reflected BSDE, Bernoulli, 24 (2018), pp. 1394-1426. · Zbl 1417.91497
[16] G. Ferreyra and P. Sundar, Comparison of solutions of stochastic differential equations and applications, Stoch. Anal. Appl., 18 (2000), pp. 211-229. · Zbl 1017.60064
[17] P. V. Gapeev, Discounted optimal stopping for maxima of some jump-diffusion processes, J. Appl. Probab., 44 (2007), pp. 713-731. · Zbl 1146.60037
[18] P. V. Gapeev, Perpetual American double lookback options on drawdowns and drawups with floating strikes, Methodol. Comput. Appl. Probab., 24 (2022), pp. 749-788. · Zbl 1489.91259
[19] P. V. Gapeev, P. M. Kort, and M. N. Lavrutich, Discounted optimal stopping problems for maxima of geometric Brownian motions with switching payoffs, Adv. Appl. Probab., 53 (2021), pp. 189-219. · Zbl 1497.60059
[20] P. V. Gapeev, P. M. Kort, M. N. Lavrutich, and J. J. J. Thijssen, Optimal double stopping problems for maxima and minima of geometric Brownian motions, Methodol. Comput. Appl. Probab., 24 (2022), pp. 789-813. · Zbl 1490.60097
[21] P. V. Gapeev and L. Li, Optimal stopping problems for maxima and minima in models with asymmetric information, Stochastics, 94 (2022), pp. 602-628. · Zbl 1497.60060
[22] P. V. Gapeev, L. Li, and Z. Wu, Perpetual American cancellable standard options in models with last passage times, Algorithms, 14 (2021), 3.
[23] P. V. Gapeev and H. Al Motairi, Discounted optimal stopping problems in first-passage time models with random thresholds, J. Appl. Probab., (2022) pp. 1-20, https://doi.org/10.1017/jpr.2021.85.
[24] P. V. Gapeev and N. Rodosthenous, Optimal stopping problems in diffusion-type models with running maxima and drawdowns, J. Appl. Probab., 51 (2014), pp. 799-817. · Zbl 1312.60044
[25] P. V. Gapeev and N. Rodosthenous, On the drawdowns and drawups in diffusion-type models with running maxima and minima, J. Math. Anal. Appl., 434 (2015), pp. 413-431. · Zbl 1329.60229
[26] P. V. Gapeev and N. Rodosthenous, Perpetual American options in diffusion-type models with running maxima and drawdowns, Stochastic Process. Appl., 126 (2016), pp. 2038-2061. · Zbl 1337.60072
[27] K. Glover and H. Hulley, Short selling with margin risk and recall risk, Int. J. Theor. Appl. Finance, 25 (2022), 2250007. · Zbl 1484.91420
[28] K. Glover, H. Hulley, and G. Peskir, Three-dimensional Brownian motion and the golden ratio rule, Ann. Appl. Prob., 23, pp. 895-922. · Zbl 1408.60032
[29] S. E. Graversen and G. Peskir (1998), Optimal stopping and maximal inequalities for geometric Brownian motion, J. Appl. Probab., 35 (2013), pp. 856-872. · Zbl 0929.60027
[30] M. Grigorova, M. C. Quenez, and A. Sulem, American options in a non-linear incomplete market model with default, Stochastic Process. Appl., 142 (2021), pp. 479-512. · Zbl 1476.91185
[31] A. Grorud and M. Pontier, Insider trading in a continuous time market model, Int. J. Theor. Appl. Finance, 1, pp. 331-347. · Zbl 0909.90023
[32] X. Guo and L. A. Shepp (2001), Some optimal stopping problems with nontrivial boundaries for pricing exotic options, J. Appl. Probab., 38 (1998), pp. 647-658. · Zbl 1026.91048
[33] X. Guo and M. Zervos, \( \pi\) options, Stochastic Process. Appl., 120 (2010), pp. 1033-1059. · Zbl 1200.91290
[34] M. Jeanblanc and L. Li, Characteristics and construction of default times, SIAM J. Financial Math., 11 (2020), pp. 720-749. · Zbl 1448.91312
[35] A. E. Kyprianou and C. Ott, A capped optimal stopping problem for the maximum process, Acta Appl. Math., 129 (2014), pp. 147-174. · Zbl 1312.60046
[36] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes I, 2nd ed., Springer, Berlin, 2001. · Zbl 1008.62073
[37] R. Mansuy and M. Yor, Random Times and Enlargements of Filtration in a Brownian Setting, Lecture Notes in Math. 1873, Springer, Berlin, 2006. · Zbl 1103.60003
[38] A. Nikeghbali and M. Yor, Doob’s maximal identity, multiplicative decomposition and enlargement of filtrations. Illinois J. Math., 50 (2006), pp. 791-814. · Zbl 1101.60059
[39] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, 5th ed., Springer, Berlin, 1998. · Zbl 0897.60056
[40] C. Ott, Optimal stopping problems for the maximum process with upper and lower caps, Ann. Appl. Probab., 23 (2013), pp. 2327-2356. · Zbl 1290.60048
[41] J. L. Pedersen, Discounted optimal stopping problems for the maximum process, J. Appl. Probab., 37 (2000), pp. 972-983. · Zbl 0980.60050
[42] G. Peskir, Optimal stopping of the maximum process: The maximality principle, Ann. Probab., 26 (1998), pp. 1614-1640. · Zbl 0935.60025
[43] G. Peskir, A change-of-variable formula with local time on surfaces, in Séminaire de Probabilité XL, Lecture Notes in Math. 1899, Springer, Berlin, 2007, pp. 69-96. · Zbl 1141.60035
[44] G. Peskir, Optimal detection of a hidden target: The median rule, Stochastic Process. Appl., 122 (2012), pp. 2249-2263. · Zbl 1253.60055
[45] G. Peskir, Quickest detection of a hidden target and extremal surfaces, Ann. App. Probab., 24 (2014), pp. 2340-2370. · Zbl 1338.60115
[46] G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006. · Zbl 1115.60001
[47] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1999. · Zbl 0917.60006
[48] N. Rodosthenous and M. Zervos, Watermark options, Finance Stoch., 21 (2017), pp. 157-186. · Zbl 1380.91134
[49] L. A. Shepp and A. N. Shiryaev, The Russian option: Reduced regret, Ann App. Probab., 3 (1993), pp. 631-640. · Zbl 0783.90011
[50] L. A. Shepp, A. N. Shiryaev, and A. Sulem, A barrier version of the Russian option, in Advances in Finance and Stochastics, K. Sandmann, and P. Schönbucher, eds. Springer, Berlin, 2002, pp. 271-284. · Zbl 1011.91038
[51] A. N. Shiryaev, Essentials of Stochastic Finance, World Scientific, Singapore, 1999. · Zbl 0926.62100
[52] A. Szimayer, Valuation of American options in the presence of event risk, Finance Stoch., 9 (2005), pp. 89-107. · Zbl 1078.91011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.