×

A class of non-oscillatory direct-space-time schemes for hyperbolic conservation laws. (English) Zbl 1508.65115

Summary: The main concern of this paper is to develop a class of non-oscillatory direct-space-time (DST) schemes for hyperbolic conservation laws. This class of DST schemes have optimal order of accuracy, however, similar to the standard schemes the naive implementation of these schemes produce oscillatory and unstable solutions. To study the nonlinear stability of DST schemes, a TVD flux limiter is introduced, and it is proven that the overall method is a TVD scheme. The numerical illustrations justify the non-oscillatory behaviour of the developed class of schemes in presence of shocks and discontinuities. It is worth to note that the underlying DST schemes include both of the upwind and symmetric schemes and the resulting TVD DST scheme produce comparable results with the standard non-oscillatory schemes like WENO schemes.

MSC:

65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI

References:

[1] Christlieb, A. J.; Liu, Y.; Tang, Q.; Xu, Z., High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes, J. Comput. Phys., 281, 334-351 (2015) · Zbl 1354.65164
[2] Després, B.; Lagoutiére, F., Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput., 16 (4), 479-524 (2001) · Zbl 0999.76091
[3] Fu, L.; Hu, Y.; Adams, A., A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws, J. Comput. Phys., 374, 724-751 (2018) · Zbl 1416.65262
[4] Gerhard, N.; Müller, S., Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case, Comput. Appl. Math., 35, 2, 321-349 (2016) · Zbl 1372.65271
[5] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[6] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 3, 357-393 (1983) · Zbl 0565.65050
[7] Harten, A.; Osher, S.; Chakravarthy, T., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 131, 1, 3-47 (1997) · Zbl 0866.65058
[8] Hovhannisyan, N.; Müller, S.; Schäfer, R., Adaptive multiresolution discontinuous Galerkin schemes for conservation laws, Math. Comp., 83, 113-151 (2014) · Zbl 1282.65118
[9] Huang, C.; Chen, L., A new adaptively central-upwind sixth-order WENO scheme, J. Comput. Phys., 357, 1-15 (2018) · Zbl 1382.65245
[10] Hundsdorfer, W.; Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equation (2003), CWI: CWI Amsterdam · Zbl 1030.65100
[11] Jiang, Y.; Shu, C.-W.; Zhang, M., An alternative formulation of finite difference weighted ENO schemes with lax-wendroff time discretization for conservation laws, SIAM J. Sci. Comput., 35, 2, A1137-A1160 (2013) · Zbl 1266.65144
[12] Kumar, R.; Biswas, B.; V. Gupta, V., Local maximum principle satisfying high-order non-oscillatory schemes, Int. J. Numer. Methods Fluids, 81, 11, 689-715 (2016)
[13] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2004), Cambridge University Press: Cambridge University Press Cambridge
[14] Li, Y.; Niu, X. D.; Yuan, H. Z.; Adnan, K.; Li, X., A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows, Acta Mech. Sin., 34, 6, 995-1014 (2018)
[15] Lindqvist, S.; Aursand, P.; Flatten, T.; Solberg, A. A., Large time step TVD schemes for hyperbolic conservation laws, SIAM J. Numer. Anal., 54, 5, 2775-2798 (2016) · Zbl 1348.65117
[16] Li, Y.; Cheng, J.; Xia, Y.; Shu, C. W., High order arbitrary lagrangian-Eulerian finite difference WENO scheme for Hamilton-Jacobi equations, Commun. Comput. Phys., 26, 5, 1530-1574 (2019) · Zbl 1473.65114
[17] Liu, C.; Hu, C., An adaptive high order WENO solver for conservation laws, Commun. Comput. Phys., 26, 3, 719-748 (2019) · Zbl 1490.76126
[18] Moradi, A.; Farzi, J.; Abdi, A., Strong stability preserving second derivative general linear methods, J. Sci. Comput., 81, 1, 392-435 (2019) · Zbl 1427.65110
[19] Osher, S.; Chakravarthy, S., Very high order accurate TVD schemes, (Dafermos, C.; Ericksen, J. L.; Kinderlehrer, D.; Slemrod, M., Oscillation Theory, Computation, and Methods of Compensated Compactness. The IMA Volumes in Mathematics and Its Applications, 2 (1986), Springer: Springer New York, NY), 229-274 · Zbl 0608.65057
[20] Peng, J.; Zhai, C.; Ni, G.; Yong, H.; Shen, Y., An adaptive characteristic-wise reconstruction WENO-z scheme for gas dynamic euler equations, Comput. Fluids, 179, 34-51 (2019) · Zbl 1411.76106
[21] Qian, S.; Li, G.; Shao, F.; Niu, Q., Well-balanced central WENO schemes for the sediment transport model in shallow water, Comput. Geosci., 22, 3, 763-773 (2018) · Zbl 1405.86013
[22] Rodionov, A. V., A comparison of the CABARET and MUSCL-type schemes, Math. Models Comput. Simul., 6, 2, 203-225 (2014)
[23] Schmidtmann, B.; Abgrall, R.; Torrilhon, M., On third-order limiter functions for finite volume methods, Bull. Braz. Math. Soc. New Series, 47, 753-764 (2016) · Zbl 1356.65219
[24] Shu, C. W., High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Rev., 51, 1, 82-126 (2009) · Zbl 1160.65330
[25] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, II, J. Comput. Phys., 83, 1, 32-78 (1989) · Zbl 0674.65061
[26] Sidilkover, D., Towards unification of the vorticity confinement and shock capturing (TVD and ENO/WENO) methods, J. Comput. Phys., 358, 235-255 (2018) · Zbl 1381.76241
[27] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), Springer · Zbl 0807.35002
[28] Strikwerda, J., Finite Difference Schemes and Partial Differential Equations (2004), SIAM · Zbl 1071.65118
[29] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 5, 995-1011 (1984) · Zbl 0565.65048
[30] Leer, B. V., Towards the ultimate conservative difference scheme. II. monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 4, 361-370 (1974) · Zbl 0276.65055
[31] Leer, B. V., Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[32] Wang, B. S.; Li, P.; Gao, Z.; Don, W., An improved fifth order alternative WENO-z finite difference scheme for hyperbolic conservation laws, J. Comput. Phys., 374, 469-477 (2018) · Zbl 1416.76194
[33] Wesseling, P., Principles of Computational Fluid Dynamics (2001), Springer-Verlag
[34] Zeng, X., A general approach to enhance slope limiters in MUSCL schemes on nonuniform rectilinear grids, SIAM J. Sci. Comput., 38, 2, A789-A813 (2016) · Zbl 1380.65198
[35] Xiong, T.; Qiu, J. M.; Xu, Z., Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible euler equations, J. Sci. Comput., 67, 3, 1066-1088 (2016) · Zbl 1383.76365
[36] Xiong, T.; Qiu, J. M.; Xu, Z., A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows, J. Comput. Phys., 252, 310-331 (2013) · Zbl 1349.76553
[37] Yang, P.; Xiong, T.; Qiu, J.; Xu, Z., High order maximum principle preserving flux finite volume method for convection dominated problems, J. Sci. Comp., 67, 2, 795-820 (2016) · Zbl 1350.65095
[38] Xiong, T.; Qiu, J. M.; Xu, Z.; Christlieb, A., High order maximum principle preserving semi-lagrangian finite difference WENO schemes for the vlasov equation, J. Comput. Phys., 273, 618-639 (2014) · Zbl 1351.76193
[39] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 9, 3091-3120 (2010) · Zbl 1187.65096
[40] Zhang, X.; Shu, C. W., A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws, SIAM J. Numer. Anal., 48, 2, 772-795 (2011) · Zbl 1226.65083
[41] Zhang, D.; Jiang, C.; Liang, D.; Cheng, L. A., Review on TVD schemes and a refined flux-limiter for steady-state calculations, J. Comput. Phys., 302, 1, 114-154 (2015) · Zbl 1349.76558
[42] Zhao, Z.; Zhu, J.; Chen, Y.; Qiu, J., A new hybrid WENO scheme for hyperbolic conservation laws, Comput. Fluids., 179, 422-436 (2019) · Zbl 1411.76110
[43] Zhu, J.; Shu, C. W., A new type of multi-resolution WENO schemes with increasingly higher order of accuracy, J. Comput. Phys., 375, 659-683 (2018) · Zbl 1416.65286
[44] Yee, H. C., Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys., 68, 1, 151-179 (1987) · Zbl 0621.76026
[45] Zhu, J.; Zhong, X.; Shu, C. W.; Qiu, J., Runge-Kutta discontinuous Galerkin method with a simple and compact hermite WENO limiter, Commun. Comput. Phys., 19, 4, 944-969 (2016) · Zbl 1373.76113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.