×

A review on TVD schemes and a refined flux-limiter for steady-state calculations. (English) Zbl 1349.76558

Summary: This paper presents an extensive review of most of the existing TVD schemes found in literature that are based on the One-step Time-space-coupled Unsteady TVD criterion (OTU-TVD), the Multi-step Time-space-separated Unsteady TVD criterion (MTU-TVD) and the Semi-discrete Steady-state TVD criterion (SS-TVD). The design principles of these schemes are examined in detail. It is found that the selection of appropriate flux-limiters is a key design element in developing these schemes. Different flux-limiter forms (CFL-dependent or CFL-independent, and various limiting criteria) are shown to lead to different performances in accuracy and convergence. Furthermore, a refined SS-TVD flux-limiter, referred to henceforth as TCDF (Third-order Continuously Differentiable Function), is proposed for steady-state calculations based on the review. To evaluate the performance of the newly proposed scheme, many existing classical SS-TVD limiters are compared with the TCDF in eight two-dimensional test cases. The numerical results clearly show that the TCDF results in an improved overall performance.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

SHASTA

References:

[1] Ubbink, O.; Issa, R. I., A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 1, 26-50 (1999) · Zbl 0955.76058
[2] Zhang, D.; Jiang, C.; Liang, D.; Chen, Z.; Yang, Y.; Shi, Y., A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 274, 709-736 (2014) · Zbl 1351.76198
[3] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 1, 567-603 (1999)
[4] Zhang, D.; Jiang, C.; Cheng, L.; Liang, D., A refined \(r\)-factor algorithm for TVD schemes on arbitrary unstructured meshes, Int. J. Numer. Methods Fluids (2015)
[5] Leonard, B. P.; Drummond, J. E., Why you should not use ‘Hybrid’, ‘Power-Law’ or related exponential schemes for convective modelling - there are much better alternatives, Int. J. Numer. Methods Fluids, 20, 6, 421-442 (1995) · Zbl 0848.76048
[6] Zhang, D.; Jiang, C.; Yang, C.; Yang, Y., Assessment of different reconstruction techniques for implementing the NVSF schemes on unstructured meshes, Int. J. Numer. Methods Fluids, 74, 3, 189-221 (2014) · Zbl 1455.65160
[7] Hayase, T.; Humphrey, J. A.C.; Greif, R., A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures, J. Comput. Phys., 98, 1, 108-118 (1992) · Zbl 0743.76054
[8] Spalding, D. B., A novel finite difference formulation for differential expressions involving both first and second derivatives, Int. J. Numer. Methods Eng., 4, 4, 551-559 (1972)
[9] Tamamidis, P.; Assanis, D. N., Evaluation of various high-order-accuracy schemes with and without flux limiters, Int. J. Numer. Methods Fluids, 16, 10, 931-948 (1993) · Zbl 0781.76068
[10] Daru, V.; Tenaud, C., High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations, J. Comput. Phys., 193, 2, 563-594 (2004) · Zbl 1109.76338
[11] Waterson, N. P.; Deconinck, H., Design principles for bounded higher-order convection schemes - a unified approach, J. Comput. Phys., 224, 1, 182-207 (2007) · Zbl 1261.76018
[12] LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 2, 627-665 (1996) · Zbl 0852.76057
[13] Wang, Y.; Hutter, K., Comparisons of numerical methods with respect to convectively dominated problems, Int. J. Numer. Methods Fluids, 37, 6, 721-745 (2001) · Zbl 0999.76100
[14] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comput. Phys., 118, 1, 120-130 (1995) · Zbl 0858.76058
[15] Denner, F.; van Wachem, B. G., TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness, J. Comput. Phys., 298, 466-479 (2015) · Zbl 1349.76450
[16] Boris, J. P.; Book, D. L., Flux-corrected transport I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys., 11, 1, 38-69 (1973) · Zbl 0251.76004
[17] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[18] Tóth, G.; Odstrčil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magneto-hydrodynamic problems, J. Comput. Phys., 128, 1, 82-100 (1996) · Zbl 0860.76061
[19] Alves, M. A.; Oliveira, P. J.; Pinho, F. T., A convergent and universally bounded interpolation scheme for the treatment of advection, Int. J. Numer. Methods Fluids, 41, 1, 47-75 (2003) · Zbl 1025.76024
[20] Jasak, H.; Weller, H. G.; Gosman, A. D., High resolution NVD differencing scheme for arbitrarily unstructured meshes, Int. J. Numer. Methods Fluids, 31, 2, 431-449 (1999) · Zbl 0952.76057
[21] Darwish, M. S.; Moukalled, F. H., Normalized variable and space formulation methodology for high-resolution schemes, Numer. Heat Transf., 26, 1, 79-96 (1994)
[22] Zhu, J., A low-diffusive and oscillation-free convection scheme, Commun. Appl. Numer. Methods, 7, 3, 225-232 (1991) · Zbl 0724.76062
[23] Song, B.; Liu, G. R.; Lam, K. Y.; Amano, R. S., On a higher-order bounded discretization scheme, Int. J. Numer. Methods Fluids, 32, 7, 881-897 (2000) · Zbl 0974.76052
[24] Darwish, M. S., A new high-resolution scheme based on the normalized variable formulation, Numer. Heat Transf., Part B, Fundam., 24, 3, 353-371 (1993)
[25] Leonard, B. P., The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Methods Appl. Mech. Eng., 88, 1, 17-74 (1991) · Zbl 0746.76067
[26] Gaskell, P. H.; Lau, A. K.C., Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm, Int. J. Numer. Methods Fluids, 8, 6, 617-641 (1988) · Zbl 0668.76118
[27] Zijlema, M., On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains, Int. J. Numer. Methods Fluids, 22, 7, 619-641 (1996) · Zbl 0864.76070
[28] Ferreira, V. G.; de Queiroz, R. A.B.; Lima, G. A.B.; Cuenca, R. G.; Oishi, C. M.; Azevedo, J. L.F.; McKee, S., A bounded upwinding scheme for computing convection- dominated transport problems, Comput. Fluids, 57, 208-224 (2012) · Zbl 1365.76190
[29] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 3, 357-393 (1983) · Zbl 0565.65050
[30] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 5, 995-1011 (1984) · Zbl 0565.65048
[31] Van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23, 3, 276-299 (1977) · Zbl 0339.76056
[32] Hundsdorfer, W.; Trompert, R. A., Method of lines and direct discretization: a comparison for linear advection, Appl. Numer. Math., 13, 6, 469-490 (1994) · Zbl 0797.65067
[33] Kemm, F., A comparative study of TVD-limiters - well-known limiters and an introduction of new ones, Int. J. Numer. Methods Fluids, 67, 4, 404-440 (2011) · Zbl 1316.76058
[34] Jeng, Y. N.; Payne, U. J., An adaptive TVD limiter, J. Comput. Phys., 118, 2, 229-241 (1995) · Zbl 0841.65077
[35] Leonard, B. P., Simple high-accuracy resolution program for convective modelling of discontinuities, Int. J. Numer. Methods Fluids, 8, 10, 1291-1318 (1988) · Zbl 0667.76125
[36] Kadalbajoo, M. K.; Kumar, R., A high resolution total variation diminishing scheme for hyperbolic conservation law and related problems, Appl. Math. Comput., 175, 2, 1556-1573 (2006) · Zbl 1118.65094
[37] Przulj, V.; Basara, B., Bounded convection schemes for unstructured grids, (15th AIAA Computational Fluid Dynamics Conference. 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA (2001))
[38] Dubey, R. K., Flux limited schemes: their classification and accuracy based on total variation stability regions, Appl. Math. Comput., 224, 325-336 (2013) · Zbl 1334.65130
[39] Čada, M.; Torrilhon, M., Compact third-order limiter functions for finite volume methods, J. Comput. Phys., 228, 11, 4118-4145 (2009) · Zbl 1273.76286
[40] Artebrant, R.; Schroll, H. J., Limiter-free third order logarithmic reconstruction, SIAM J. Sci. Comput., 28, 1, 359-381 (2006) · Zbl 1141.65376
[41] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 2, 231-303 (1987) · Zbl 0652.65067
[42] Yang, H. Q.; Przekwas, A. J., A comparative study of advanced shock-capturing schemes applied to Burgers’ equation, J. Comput. Phys., 102, 1, 139-159 (1992) · Zbl 0759.76053
[43] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 2, 408-463 (1990) · Zbl 0697.65068
[44] Arora, M.; Roe, P. L., A well-behaved TVD limiter for high-resolution calculations of unsteady flow, J. Comput. Phys., 132, 1, 3-11 (1997) · Zbl 0878.76045
[45] Darwish, M. S.; Moukalled, F., TVD schemes for unstructured grids, Int. J. Heat Mass Transf., 46, 4, 599-611 (2003) · Zbl 1121.76357
[46] Li, L. X.; Liao, H. S.; Qi, L. J., An improved \(r\)-factor algorithm for TVD schemes, Int. J. Heat Mass Transf., 51, 3, 610-617 (2008) · Zbl 1206.76039
[47] Hou, J.; Simons, F.; Hinkelmann, R., A new TVD method for advection simulation on 2D unstructured grids, Int. J. Numer. Methods Fluids, 71, 10, 1260-1281 (2013) · Zbl 1431.65144
[48] Lien, F. S.; Leschziner, M. A., Upstream monotonic interpolation for scalar transport with application to complex turbulent flows, Int. J. Numer. Methods Fluids, 19, 6, 527-548 (1994) · Zbl 0814.76070
[49] Liu, J.; Delshad, M.; Pope, G. A.; Sepehrnoori, K., Application of higher-order flux-limited methods in compositional simulation, Transp. Porous Media, 16, 1, 1-29 (1994)
[50] Oldenburg, C. M.; Pruess, K., Simulation of propagating fronts in geothermal reservoirs with the implicit Leonard total variation diminishing scheme, Geothermics, 29, 1, 1-25 (2000)
[51] Roe, P. L., Some contributions to the modelling of discontinuous flows, (Large-scale Computations in Fluid Mechanics. Large-scale Computations in Fluid Mechanics, Lectures in Applied Mathematics Series, vol. 22 (1985), AMS), 163-193 · Zbl 0665.76072
[52] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 2, 217-237 (1960) · Zbl 0152.44802
[53] Kuan, K. B.; Lin, C. A., Adaptive QUICK-based scheme to approximate convective transport, AIAA J., 38, 12, 2233-2237 (2000)
[54] Van Leer, B., Upwind-difference methods for aerodynamic problems governed by the Euler equations, Large-scale Computations in Fluid Mechanics, 1, 327-336 (1985) · Zbl 0582.76065
[55] Hundsdorfer, W.; Koren, B.; Van Loon, M.; Verwer, J. G., A positive finite-difference advection scheme, J. Comput. Phys., 117, 1, 35-46 (1995) · Zbl 0860.65073
[56] Spekreijse, S. P., Multi-grid solution of the steady Euler equations (1986), Delft University of Technology: Delft University of Technology The Netherlands, Doctoral Thesis · Zbl 0612.76077
[57] Van Albada, G. D.; Van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., 108, 76-84 (1982) · Zbl 0492.76117
[58] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 221, 73-85 (1998) · Zbl 0897.65058
[59] Shu, C. W.; Zang, T. A.; Erlebacher, G.; Whitaker, D.; Osher, S., High-order ENO schemes applied to two- and three-dimensional compressible flow, Appl. Numer. Math., 9, 1, 45-71 (1992) · Zbl 0741.76052
[60] Koren, B., A robust upwind discretization method for advection, diffusion and source terms (1993), Centrum voor Wiskunde en Informatica: Centrum voor Wiskunde en Informatica Amsterdam · Zbl 0805.76051
[61] Yee, H. C., Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys., 68, 1, 151-179 (1987) · Zbl 0621.76026
[62] Chakravarthy, S. R.; Osher, S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Pap., 85, Article 0363 pp. (1985)
[63] Leonard, B. P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19, 1, 59-98 (1979) · Zbl 0423.76070
[64] Lin, C. H.; Lin, C. A., Simple high-order bounded convection scheme to model discontinuities, AIAA J., 35, 3, 563-565 (1997)
[65] Varonos, A.; Bergeles, G., Development and assessment of a variable-order non-oscillatory scheme for convection term discretization, Int. J. Numer. Methods Fluids, 26, 1, 1-16 (1998) · Zbl 0906.76060
[66] Liang, D.; Wang, X.; Falconer, R. A.; Bockelmann-Evans, B. N., Solving the depth-integrated solute transport equation with a TVD-MacCormack scheme, Environ. Model. Softw., 25, 12, 1619-1629 (2010)
[67] Griffith, B. E., An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, J. Comput. Phys., 228, 20, 7565-7595 (2009) · Zbl 1391.76474
[68] Erturk, E.; Corke, T. C.; Gökçöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Methods Fluids, 48, 7, 747-774 (2005) · Zbl 1071.76038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.