×

A robust spline difference method for Robin-type reaction-diffusion problem using grid equidistribution. (English) Zbl 1508.65088

Summary: This paper presents a numerical approximation technique to solve reaction-diffusion singularly-perturbed differential equation with robin-type boundary conditions. The proposed technique applies cubic splines to discretize the robin-boundary conditions and exponential splines to generate the solution of singularly perturbed differential equation at the internal nodes of a layer adapted grid. The layer adapted grid is generated by equidistributing a positive monitor function. The error estimates indicate that the proposed technique is parameter-uniform second-order convergent and is numerically stable. Numerical experiments have been performed and presented to corroborate the theoretical results.

MSC:

65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
Full Text: DOI

References:

[1] Arnold, V. I.; Kozlov, V. V.; Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3 (2007), Springer Science & Business Media · Zbl 0885.70001
[2] Lagerstrom, P., Fluid Mechanics and Singular Perturbations (2012), Elsevier
[3] Sannuti, P., Singular perturbation method in the theory of optimal control, Technical Report (1968), Illinois University, Urbana, Coordinated Science Lab.
[4] Fernández, F. M., Exact and approximate solutions to the Schrödinger equation for the harmonic oscillator with a singular perturbation, Phys. Lett. A, 160, 6, 511-514 (1991)
[5] Singer, A.; Gillespie, D.; Norbury, J.; Eisenberg, R., Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels, Eur. J. Appl. Math., 19, 5, 541-560 (2008) · Zbl 1145.92010
[6] Jacob, M., Heat Transfer, John Wiley & Sons, 1, 655 (1949)
[7] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, 24 (2008), Springer Science & Business Media · Zbl 1155.65087
[8] Farrell, P.; Hegarty, A.; Miller, J. M.; O’Riordan, E.; Shishkin, G. I., Robust Computational Techniques for Boundary Layers (2000), Chapman and Hall/CRC · Zbl 0964.65083
[9] Das, P., Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290, 16-25 (2015) · Zbl 1321.65126
[10] Bakhvalov, N., Towards optimization of methods for solving boundary value problems in the presence of boundary layers, Zh. Vychisl. Mat. i Mat. Fiz., 9, 841-859 (1969) · Zbl 0208.19103
[11] Vulanovic, R., On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh, Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 13, 13, 187-201 (1983) · Zbl 0573.65064
[12] Gartland, E. C., Graded-mesh difference schemes for singularly perturbed two-point boundary value problems, Math. Comput., 51, 184, 631-657 (1988) · Zbl 0699.65063
[13] Shishkin, G. I., A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions, USSR Comput. Math. Math. Phys., 28, 6, 32-41 (1988) · Zbl 0698.65058
[14] Roos, H.-G.; Linß, T., Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63, 1, 27-45 (1999) · Zbl 0931.65085
[15] Linß, T.; Roos, H.-G.; Vulanovic, R., Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems, SIAM J. Numer. Anal., 38, 3, 897-912 (2000) · Zbl 0977.65067
[16] Vulanović, R., A priori meshes for singularly perturbed quasilinear two-point boundary value problems, IMA J. Numer. Anal., 21, 1, 349-366 (2001) · Zbl 0989.65081
[17] Beckett, G.; Mackenzie, J., Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem, Appl. Numer. Math., 35, 2, 87-109 (2000) · Zbl 0963.65086
[18] Kopteva, N.; Stynes, M., A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 4, 1446-1467 (2001) · Zbl 1012.65076
[19] Linß, T., Uniform pointwise convergence of finite difference schemes using grid equidistribution, Computing, 66, 1, 27-39 (2001) · Zbl 0984.65077
[20] Kopteva, N.; Madden, N.; Stynes, M., Grid equidistribution for reaction-diffusion problems in one dimension, Numer. Algorithms, 40, 3, 305-322 (2005) · Zbl 1089.65077
[21] Ren, Y.; Russell, R. D., Moving mesh techniques based upon equidistribution, and their stability, SIAM J. Sci. Stat. Comput., 13, 6, 1265-1286 (1992) · Zbl 0764.65055
[22] Huang, W.; Ren, Y.; Russell, R. D., Moving mesh methods based on moving mesh partial differential equations, J. Comput. Phys., 113, 2, 279-290 (1994) · Zbl 0807.65101
[23] Budd, C. J.; Huang, W.; Russell, R. D., Adaptivity with moving grids, Acta Numer., 18, 111-241 (2009) · Zbl 1181.65122
[24] Qiu, Y.; Sloan, D.; Tang, T., Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence, J. Comput. Appl. Math., 116, 1, 121-143 (2000) · Zbl 0977.65069
[25] Kopteva, N., Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 2, 423-441 (2001) · Zbl 1003.65091
[26] Chen, K., Error equidistribution and mesh adaptation, SIAM J. Sci. Comput., 15, 4, 798-818 (1994) · Zbl 0806.65090
[27] Beckett, G.; Mackenzie, J., On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution, J. Comput. Appl. Math., 131, 1-2, 381-405 (2001) · Zbl 0984.65076
[28] K. Surla, V. Jerković, An exponentially fitted quadratic spline difference scheme on a non-uniform mesh, volume 19. · Zbl 0722.65039
[29] Stojanović, M., Numerical solution of a singularly perturbed problem via exponential splines, BIT Numer. Math., 30, 1, 171-176 (1990) · Zbl 0699.65064
[30] Surla, K., On numerical solving singularly perturbed boundary value problems by spline in tension, Novi Sad J. Math., 24, 2, 175-186 (1994) · Zbl 0948.65074
[31] Surla, K.; Uzelac, Z., A spline difference scheme on a piecewise equidistant grid, J. Appl. Math. Mech., 77, 12, 901-909 (1997) · Zbl 0888.65089
[32] Herceg, D.; Surla, K.; Rapajic, S., Cubic spline difference scheme on a mesh of Bakhvalov type, Novi Sad J. Math, 28, 3, 41-49 (1998) · Zbl 1011.65045
[33] Rashidinia, J.; Ghasemi, M.; Mahmoodi, Z., Spline approach to the solution of a singularly-perturbed boundary-value problems, Appl. Math. Comput., 189, 1, 72-78 (2007) · Zbl 1123.65077
[34] Natesan, S.; Bawa, R. K., Second-order numerical scheme for singularly perturbed reaction-diffusion robin problems, J. Numer. Anal. Ind. Appl. Math., 2, 3-4, 177-192 (2007) · Zbl 1149.65060
[35] Rao, S. C.S.; Kumar, M., Parameter-uniformly convergent exponential spline difference scheme for singularly perturbed semilinear reaction-diffusion problems, Nonlinear Anal., 71, 12, e1579-e1588 (2009) · Zbl 1238.65079
[36] Rao, S. C.S.; Kumar, M., A uniformly convergent exponential spline difference scheme for singularly perturbed reaction-diffusion problems, Neural Parallel Sci. Comput., 18, 2, 121-136 (2010) · Zbl 1221.65181
[37] Das, P.; Natesan, S., Higher-order parameter uniform convergent schemes for Robin type reaction-diffusion problems using adaptively generated grid, Int. J. Comput. Methods, 9, 04, 1250052 (2012) · Zbl 1359.65123
[38] McCartin, B. J., Theory of exponential splines, J. Approx. Theory, 66, 1, 1-23 (1991) · Zbl 0756.41019
[39] Uzelac, Z.; Surla, K.; Pavlovic, L., On collocation methods for singular perturbation problems, Novi Sad J. Math, 30, 3, 173-183 (2000)
[40] Surla, K.; Uzelac, Z., A uniformly accurate spline collocation method for a normalized flux, J. Comput. Appl. Math., 166, 1, 291-305 (2004) · Zbl 1078.65066
[41] Surla, K.; Teofanov, L.; Uzelac, Z., Spline difference scheme and minimum principle for a reaction-diffusion problem, Novi Sad J. Math., 37, 2, 249-258 (2007) · Zbl 1164.65027
[42] Linß, T.; Radojev, G.; Zarin, H., Approximation of singularly perturbed reaction-diffusion problems by quadratic C^1-splines, Numer. Algorithms, 61, 1, 35-55 (2012) · Zbl 1267.65092
[43] Miller, J. J.; O’riordan, E.; Shishkin, G., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum-Norm for Linear Problems in One and Two Dimensions (1996), World Scientific · Zbl 0915.65097
[44] Chadha, N. M.; Kopteva, N., A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem, IMA J. Numer. Anal., 31, 1, 188-211 (2009) · Zbl 1211.65099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.