×

Grid equidistribution for reaction-diffusion problems in one dimension. (English) Zbl 1089.65077

This paper deals with an adaptive numerical method for the linear reaction-diffusion two-point boundary value problem: \(-\varepsilon^2u''(x)+b(x)u(x)=f(x)\), \(x\in(0,1)\), \(u(0) = u(1) =0\), where \(b,f\in [0,1]\) and \(0<\beta <b(x)\leq \overline b\) on \([0,1]\).
Some facts about the solution \(u(x)\) and stability bounds for the computed solution \(u_N\) (on an arbitrary mesh) are listed. These bounds are used to provide strong heuristic evidence for the choice of monitor function to be equidistributed in an adaptive algorithm. Some numerical results are presented.

MSC:

65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
34B05 Linear boundary value problems for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] V.B. Andreev, On the uniform convergence on arbitrary meshes of the classical difference scheme for a one-dimensional singularly perturbed reaction–diffusion problem, Zh. Vychisl. Mat. Mat. Fiz. 3 (2004) 474–489 (in Russian).
[2] N.S. Bakhvalov, Towards optimization of methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz. 9 (1969) 841–859 (in Russian).
[3] G. Beckett and J.A. Mackenzie, Convergence analysis of finite difference approximations to a singularly perturbed boundary value problem, Appl. Numer. Math. 35 (2000) 87–109. · Zbl 0963.65086 · doi:10.1016/S0168-9274(99)00065-3
[4] G. Beckett and J.A. Mackenzie, On a uniformly accurate finite difference approximation of a singularly perturbed reaction–diffusion problem using grid equidistribution, J. Comput. Appl. Math. 131 (2001) 381–405. · Zbl 0984.65076 · doi:10.1016/S0377-0427(00)00260-0
[5] W. Cao, W. Huang and R.D. Russell, A study of monitor functions for two-dimensional adaptive mesh generation, SIAM J. Sci. Comput. 20 (1999) 1978–1994. · Zbl 0937.65104 · doi:10.1137/S1064827597327656
[6] T.-F. Chen and H.-D. Yang, Numerical construction of optimal adaptive grids in two spatial dimensions, Computers Math. Appl. 39 (2000) 101–120. · Zbl 0964.65124 · doi:10.1016/S0898-1221(00)00133-4
[7] W. Huang and D.M. Sloan, A simple adaptive grid in two dimensions, SIAM J. Sci. Comput. 15 (1994) 776–797. · Zbl 0809.65096 · doi:10.1137/0915049
[8] N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection–diffusion problem, SIAM J. Numer. Anal. 39 (2001) 423–441. · Zbl 1003.65091 · doi:10.1137/S0036142900368642
[9] N. Kopteva and M. Stynes, A robust adaptive method for a quasilinear one-dimensional convection–diffusion problem, SIAM J. Numer. Anal. 39 (2001) 1446–1467. · Zbl 1012.65076 · doi:10.1137/S003614290138471X
[10] N. Kopteva and M. Stynes, Numerical analysis of a singularly perturbed nonlinear reaction–diffusion problem with multiple solutions, Appl. Numer. Math. 51 (2004) 273–288. · Zbl 1069.65087 · doi:10.1016/j.apnum.2004.07.001
[11] H.-O. Kreiss, T.A. Manteuffel, B. Swartz, B. Wendroff and A.B. White, Supra-convergent schemes on irregular grids, Math. Comp. 47 (1986) 537–554. · Zbl 0619.65055 · doi:10.1090/S0025-5718-1986-0856701-5
[12] T. Linß, Uniform pointwise convergence of finite difference schemes using grid equidistribution, Computing 66 (2001) 27–39. · Zbl 0984.65077 · doi:10.1007/s006070170037
[13] T. Linßand N. Madden, A finite element analysis of a coupled system of singularly perturbed reaction–diffusion equations, Appl. Math. Comput. 148 (2004) 869–880. · Zbl 1042.65065 · doi:10.1016/S0096-3003(02)00955-4
[14] J.A. Mackenzie, Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid, IMA J. Numer. Anal. 19 (1999) 233–249. · Zbl 0929.65047 · doi:10.1093/imanum/19.2.233
[15] N. Madden and M. Stynes, A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems, IMA J. Numer. Anal. 23 (2003) 627–644. · Zbl 1048.65076 · doi:10.1093/imanum/23.4.627
[16] J.J.H. Miller, E. O’Riordan and G.I. Shishkin, Solution of Singularly Perturbed Problems with -uniform Numerical Methods – Introduction to the Theory of Linear Problems in One and Two Dimensions (World Scientific, Singapore, 1996).
[17] E. O’Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed one-dimensional reaction–diffusion problem, Math. Comp. 47 (1986) 555–570. · Zbl 0625.65073 · doi:10.2307/2008172
[18] Y. Qiu and D.M. Sloan, Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptive grid, J. Comput. Appl. Math. 101 (1999) 1–25. · Zbl 0959.65087 · doi:10.1016/S0377-0427(98)00136-8
[19] Y. Qiu, D.M. Sloan and T. Tang, Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: Analysis of convergence, J. Comput. Appl. Math. 116 (2000) 121–143. · Zbl 0977.65069 · doi:10.1016/S0377-0427(99)00315-5
[20] H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, Vol. 24 (Springer-Verlag, Berlin, 1996). · Zbl 0844.65075
[21] A.H. Schatz and L.B. Wahlbin, On the finite element method for singularly perturbed reaction–diffusion problems in two and one dimensions, Math. Comp. 40 (1983) 47–88. · Zbl 0518.65080 · doi:10.1090/S0025-5718-1983-0679434-4
[22] M. Stynes and L. Tobiska, A finite difference analysis of a streamline diffusion method on a Shishkin mesh, Numer. Algorithms 18 (1998) 337–360. · Zbl 0916.65108 · doi:10.1023/A:1019185802623
[23] G. Sun and M. Stynes, A uniformly convergent method for a singularly perturbed semilinear reaction–diffusion problem with multiple solutions, Math. Comp. 65 (1996) 1085–1109. · Zbl 0858.65081 · doi:10.1090/S0025-5718-96-00753-3
[24] A.N. Tihonov and A.A. Samarski \(\backslash\)u{\(\backslash\)i} , Homogeneous difference schemes on irregular meshes, Zh. Vychisl. Mat. Mat. Fiz. (1962) 812–832 (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.