×

Geodesic rays and stability in the lowercase cscK problem. (English. French summary) Zbl 1508.58004

Author’s abstract: We prove that any finite energy geodesic ray with a finite Mabuchi slope is maximal in the sense of Berman-Boucksom-Jonsson, and reduce the proof of the uniform Yau-Tian-Donaldson conjecture for constant scalar curvature Kähler metrics to Boucksom-Jonsson’s regularization conjecture about the convergence of non-Archimedean entropy functional. As further applications, we show that a uniform K-stability condition for model filtrations and the \(\mathcal{I}^{K_X}\)-stability are both sufficient conditions for the existence of cscK metrics. The first condition is also conjectured to be necessary. Our arguments also produce a different proof of the toric uniform version of YTD conjecture for all polarized toric manifolds. Another result proved here is that the Mabuchi slope of a geodesic ray associated to a test configuration is equal to the non-Archimedean Mabuchi invariant.

MSC:

58E11 Critical metrics
26E30 Non-Archimedean analysis
32Q15 Kähler manifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[1] Remark 6.13. -Gao Chen claimed that uniform slope-J K X -stability (as defined by Lejmi-Székelyhidi) implies properness of J Ric. / -energy, which together with Chen-Cheng’s result would also imply the existence of a cscK metric.
[2] Remark 6.14. -In the first version of this paper, the author introduced some stability condition called Q K-stability. However as later pointed to me by C. Xu, Y. Odaka and Y. Gongyo [54], this condition coincides with the J K X -stability and hence does not give us more information.
[3] K. Altmann, J. Hausen, H. Süss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), 215-242. · Zbl 1159.14025
[4] R. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, preprint arXiv:1509.04561. · Zbl 1487.32141
[5] R. J. Berman, B. Berndtsson, Convexity of the K-energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), 1165-1196. · Zbl 1376.32028
[6] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. reine angew. Math. 751 (2019), 27-89. · Zbl 1430.14083
[7] R. J. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179-245. · Zbl 1277.32049
[8] R. J. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc. 34 (2021), 605-652. · Zbl 1487.32141
[9] R. J. Berman, T. Darvas, C. H. Lu, Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017), 2945-2988. · Zbl 1372.53073
[10] R. J. Berman, T. Darvas, C. H. Lu, Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. Éc. Norm. Supér. 53 (2020), 267-289. · Zbl 1452.32027
[11] T. Blo om, N. Levenberg, Pluripotential energy, Potential Anal. 36 (2012), 155-176. · Zbl 1235.32025
[12] S. Boucksom, Variational and non-archimedean aspects of the Yau-Tian-Donaldson conjecture, in Proceedings of the International Congress of Mathematicians Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., 2018, 591-617. · Zbl 1447.32030
[13] S. Boucksom, J.-P. Demailly, M. Pȃun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Alge-braic Geom. 22 (2013), 201-248. · Zbl 1267.32017
[14] S. Boucksom, C. Favre, M. Jonsson, Valuations and plurisubharmonic singulari-ties, Publ. Res. Inst. Math. Sci. 44 (2008), 449-494. · Zbl 1146.32017
[15] S. Boucksom, C. Favre, M. Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), 279-308. · Zbl 1162.14003
[16] S. Boucksom, C. Favre, M. Jonsson, Solution to a non-Archimedean Monge-Ampère equation, J. Amer. Math. Soc. 28 (2015), 617-667. · Zbl 1325.32021
[17] S. Boucksom, C. Favre, M. Jonsson, Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom. 25 (2016), 77-139. · Zbl 1346.14065
[18] S. Boucksom, T. Hisamoto, M. Jonsson, Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier 67 (2017), 743-841. · Zbl 1391.14090
[19] S. Boucksom, T. Hisamoto, M. Jonsson, Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS) 21 (2019), 2905-2944. · Zbl 1478.53115
[20] S. Boucksom, M. Jonsson, A non-Archimedean approach to K-stability, preprint arXiv:1805.11160v1.
[21] S. Boucksom, M. Jonsson, Global pluripotential theory over a trivially valued field, preprint arXiv:1801.08229.
[22] J. I. Burgos Gil, P. Philippon, M. Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque 360, 2014. · Zbl 1311.14050
[23] B. Chen, A.-M. Li, L. Sheng, Uniform K-stability for extremal metrics on toric varieties, J. Differential Equations 257 (2014), 1487-1500. · Zbl 1300.53067
[24] X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. 2000 (2000), 607-623. · Zbl 0980.58007
[25] X. Chen, J. Cheng, On the constant scalar curvature Kähler metrics (I)-A priori estimates, J. Amer. Math. Soc. 34 (2021), 909-936. · Zbl 1472.14042
[26] X. Chen, J. Cheng, On the constant scalar curvature Kähler metrics (II)-Existence results, J. Amer. Math. Soc. 34 (2021), 937-1009. · Zbl 1477.14067
[27] X. Chen, J. Cheng, On the constant scalar curvature Kähler metrics (III)-General automorphism group, preprint arXiv:1801.05907.
[28] ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
[29] X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds. I-III: Limits with cone angle less than 2 , J. Amer. Math. Soc. 28 (2015), 183-197, 199-234, 235-178. · Zbl 1312.53097
[30] J. Chu, V. Tosatti, B. Weinkove, C 1;1 regularity for degenerate complex Monge-Ampère equations and geodesic rays, Comm. Partial Differential Equations 43 (2018), 292-312. · Zbl 1404.32075
[31] T. C. Collins, G. Székelyhidi, Convergence of the J -flow on toric manifolds, J. Differential Geom. 107 (2017), 47-81. · Zbl 1392.53072
[32] T. Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182-219. · Zbl 1327.53093
[33] T. Darvas, Weak geodesic rays in the space of Kähler potentials and the class E.X;
[34] !/, J. Inst. Math. Jussieu 16 (2017), 837-858. · Zbl 1377.53092
[35] T. Darvas, W. He, Geodesic rays and Kähler-Ricci trajectories on Fano manifolds, Trans. Amer. Math. Soc. 369 (2017), 5069-5085. · Zbl 1366.53052
[36] T. Darvas, C. H. Lu, Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol. 24 (2020), 1907-1967. · Zbl 1479.32011
[37] T. Darvas, Y. A. Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017), 347-387. · Zbl 1386.32021
[38] T. Darvas, M. Xia, The closures of test configurations and algebraic singularity types, Adv. Math. 397 (2022), Paper No. 108198. · Zbl 1487.32132
[39] V. Datar, G. Székelyhidi, Kähler-Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016), 975-1010. · Zbl 1359.32019
[40] J.-P. Demailly, On the cohomology of pseudoeffective line bundles, in Complex geom-etry and dynamics, Abel Symp. 10, Springer, 2015, 51-99. · Zbl 1337.32030
[41] J.-P. Demailly, L. Ein, R. Lazarsfeld, A subadditivity property of multiplier ideals, 48, 2000, 137-156. · Zbl 1077.14516
[42] R. Dervan, Alpha invariants and coercivity of the Mabuchi functional on Fano mani-folds, Ann. Fac. Sci. Toulouse Math. 25 (2016), 919-934. · Zbl 1357.32018
[43] R. Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016), 4728-4783. · Zbl 1405.32032
[44] R. Dervan, J. Keller, A finite dimensional approach to Donaldson’s J-flow, Comm. Anal. Geom. 27 (2019), 1025-1085. · Zbl 1432.58008
[45] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289-349. · Zbl 1074.53059
[46] C. Favre, M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), 655-684. · Zbl 1075.14001
[47] G. B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York), John Wiley & Sons, 1999. · Zbl 0924.28001
[48] K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Amer. J. Math. 140 (2018), 391-414. · Zbl 1400.14105
[49] V. Guedj, A. Zeriahi, Degenerate complex Monge-Ampère equations, EMS Tracts in Mathematics 26, European Mathematical Society (EMS), 2017. · Zbl 1373.32001
[50] T. Hisamoto, Mabuchi’s soliton metric and relative D-stability, preprint arXiv:1905.05948.
[51] T. Hisamoto, Stability and coercivity for toric polarizations, preprint arXiv:1610.07998.
[52] M. Jonsson, M. Mustat ,ȃ , Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier 62 (2012), 2145-2209. · Zbl 1272.14016
[53] C. Li, G-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. math. 227 (2022), 661-744. · Zbl 1495.32064
[54] C. Li, K-stability and Fujita approximation, preprint arXiv:2102.09457.
[55] C. Li, G. Tian, F. Wang, On the Yau-Tian-Donaldson conjecture for singular Fano varieties, Comm. Pure Appl. Math. 74 (2021), 1748-1800. · Zbl 1484.32041
[56] H. Li, Y. Shi, A criterion for the properness of the K-energy in a general Kähler class (II), Commun. Contemp. Math. 18 (2016), 1550071. · Zbl 1358.53068
[57] Y. Odaka, The Calabi conjecture and K-stability, Int. Math. Res. Not. 2012 (2012), 2272-2288. · Zbl 1484.32043
[58] Y. Odaka, Note through email communication, 2020.
[59] D. H. Phong, J. Ross, J. Sturm, Deligne pairings and the Knudsen-Mumford expansion, J. Differential Geom. 78 (2008), 475-496. · Zbl 1138.14003
[60] D. H. Phong, J. Sturm, Test configurations for K-stability and geodesic rays, J. Symplectic Geom. 5 (2007), 221-247. · Zbl 1193.53104
[61] D. H. Phong, J. Sturm, Regularity of geodesic rays and Monge-Ampère equations, Proc. Amer. Math. Soc. 138 (2010), 3637-3650. · Zbl 1205.31004
[62] J. Ross, D. Witt Nyström, Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014), 125-169. · Zbl 1300.32021
[63] J. Song, B. Weinkove, On the convergence and singularities of the J -flow with appli-cations to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), 210-229. · Zbl 1135.53047
[64] G. Székelyhidi, Filtrations and test-configurations, Math. Ann. 362 (2015), 451-484. · Zbl 1360.53075
[65] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. math. 130 (1997), 1-37. · Zbl 0892.53027
[66] G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser, 2000. · Zbl 0978.53002
[67] G. Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 1085-1156. · Zbl 1318.14038
[68] G. Tian, K-stability implies CM-stability, in Geometry, analysis and probability, Progr. Math. 310, Birkhäuser, 2017, 245-261. · Zbl 1376.32012
[69] D. Witt Nyström, Test configurations and Okounkov bodies, Compos. Math. 148 (2012), 1736-1756. · Zbl 1276.14017
[70] ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
[71] M. Xia, On sharp lower bounds for Calabi-type functionals and destabilizing proper-ties of gradient flows, Anal. PDE 14 (2021), 1951-1976. · Zbl 1478.32056
[72] B. Zhou, X. Zhu, Relative K-stability and modified K-energy on toric manifolds, Adv. Math. 219 (2008), 1327-1362. · Zbl 1153.53030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.