×

Filtrations and test-configurations. With an appendix by Sebastien Boucksom. (English) Zbl 1360.53075

For a compact complex manifold \(X\) with an ample line bundle \(L\), the notion of a test configuration is central to the definition of \(K\)-stability, which in turn is conjecturally related to the existence of a constant scalar curvature Kähler (cscK) metric in the first Chern class \(c_1(L)\). The author extends the concepts of test configurations in the several versions of \(K\)-stability. He introduces a generalized notion of \(K\)-stability that is defined using filtrations instead of test configurations. These filtrations are obtained by asking for a kind of uniform \(K\)-stability through a certain class of sequences of test configurations. This is motivated by several reasons. First, every convex function on the moment polytope of a toric variety can be thought of as a filtration, but only the rational piecewise linear convex functions give rise to test configurations [S. K. Donaldson, J. Differ. Geom. 62, No. 2, 289–349 (2002; Zbl 1074.53059)]. Second, in [V. Apostolov et al., Invent. Math. 173, No. 3, 547–601 (2008; Zbl 1145.53055)], an example of a manifold was obtained that does not admit an extremal metric, but does not appear to be destabilized by a test configuration.
This and other examples are described in detail in Section 4. The author defines a notion of Futaki invariant for filtrations, extending the usual definition. In Section 6, the main result of the paper is obtained:
Theorem A. Suppose that \(X\) admits a cscK metric in \(c_1(L)\), and the automorphism group of \((X,L)\) is finite. If \(\chi\) is a filtration for \((X,L)\) such that \(\|\chi \|_2>0\), then the Futaki invariant of \(\chi\) satisfies \(\mathrm{Fut}(\chi)>0\). A key ingredient in the proof of this result is the Okounkov body, and the concave transform of a filtration which is described in Section 5 of the paper. In the appendix, written by S. Boucksom, the following result is proved:
Theorem B. Suppose that \(S\subset \bigoplus_{k\geq 0}H^0(X,L^k)\) is a graded subalgebra which contains an ample series. In addition suppose that
\[ \lim_{k\to \infty}k^{-n}\dim S_k<\lim_{k\to \infty}k^{-n}\dim H^0(X,L^k), \]
where \(n\) is the dimension of \(X\). Then there is a point \(p\in X\) and a number \(\varepsilon>0\), such that \(S_k\subset H^0(X, L^k\otimes_p^{[k\varepsilon]})\), for all \(k\), where \(I_p\) is the ideal sheaf of the point \(p\).

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
57R20 Characteristic classes and numbers in differential topology
32Q15 Kähler manifolds

References:

[1] Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry III, extremal metrics and stability. Invent. Math. 173(3), 547-601 (2008) · Zbl 1145.53055 · doi:10.1007/s00222-008-0126-x
[2] Arezzo, C., Pacard, F.: Blowing up and desingularizing constant scalar curvature Kähler manifolds. Acta Math. 196(2), 179-228 (2006) · Zbl 1123.53036 · doi:10.1007/s11511-006-0004-6
[3] Boucksom, S.: Corps d’Okounkov. Séminaire Bourbaki, 65ème année, n. 1059 · Zbl 1365.14059
[4] Boucksom, S., Chen, H.: Okounkov bodies of filtered linear series. Compos. Math. 147, 1205-1229 (2011) · Zbl 1231.14020 · doi:10.1112/S0010437X11005355
[5] Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics and stability. Int. Math. Res. Notices 2014(8), 2119-2125 (2014) · Zbl 1331.32011
[6] Donaldson, S. K.: b-Stability and blow-ups. Proc. Edinb. Math. Soc. (2) 57(1), 125-137 (2014) · Zbl 1288.53070
[7] Donaldson, S.K.: Stability, birational transformations and the Kähler-Einstein problem. Surv. Differ. Geom. 17, 203-228 (2012) · Zbl 1382.32018
[8] Donaldson, S.K.: Scalar curvature and projective embeddings. Int. J. Differ. Geom. 59, 479-522 (2001) · Zbl 1052.32017
[9] Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289-349 (2002) · Zbl 1074.53059
[10] Ein, L., Lazarsfeld, R., Mustăţa, M., Nakamaye, M., Popa, M.: Asymptotic invariants of base loci. Ann. Inst. Fourier (Grenoble) 56(6), 1701-1734 (2006) · Zbl 1127.14010 · doi:10.5802/aif.2225
[11] Commutative Algebra with a View Toward Algebraic Geometry, Volume 150 of Graduate Texts in Mathematics. Springer, New York (1995) · Zbl 0819.13001
[12] Gale, D., Klee, V., Rockafellar, R.T.: Convex functions on convex polytopes. Proc. Am. Math. Soc. 19, 867-873 (1968) · Zbl 0246.26009 · doi:10.1090/S0002-9939-1968-0230219-6
[13] Guillemin, V., Sternberg, S.: Riemann sums over polytopes. Ann. Inst. Fourier (Grenoble) 57(7), 2183-2195 (2007) · Zbl 1143.52011 · doi:10.5802/aif.2330
[14] Hübl, R., Swanson, I.: Discrete valuations centered on local domains. J. Pure Appl. Algebra 161(1-2), 145-166 (2001) · Zbl 1094.13502 · doi:10.1016/S0022-4049(00)00086-4
[15] Jow, S.Y.: Okounkov bodies and restricted volumes along very general curves. Adv. Math. 223, 1356-1371 (2010) · Zbl 1187.14012 · doi:10.1016/j.aim.2009.09.015
[16] Kaveh, K., Khovanskii, A.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925-978 (2012) · Zbl 1270.14022
[17] Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I. Preliminaries on ‘det’ and ‘div’. Math. Scand. 39(1), 19-55 (1976) · Zbl 0343.14008
[18] Lazarsfeld, R., Mustăţa, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. 42(5), 783-835 (2009) · Zbl 1182.14004
[19] Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. Math. (2) 180(1), 197-232 (2014) · Zbl 1301.14026
[20] Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, Volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994). · Zbl 0797.14004
[21] Okounkov, A.: Brunn-minkowski inequality for multiplicities. Invent. Math. 125, 405-411 (1996) · Zbl 0893.52004 · doi:10.1007/s002220050081
[22] Phong, D.H., Sturm, J.: Test-configurations for K-stability and geodesic rays. J. Symplectic Geom. 5(2), 221-247 (2007) · Zbl 1193.53104 · doi:10.4310/JSG.2007.v5.n2.a3
[23] Ross, J., Thomas, R.P.: An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differ. Geom. 72, 429-466 (2006) · Zbl 1125.53057
[24] Ross, J., Thomas, R.P.: A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16(2), 201-255 (2007) · Zbl 1200.14095 · doi:10.1090/S1056-3911-06-00461-9
[25] Ross, J., Witt Nyström, D.: Analytic test configurations and geodesic rays. J. Symplectic Geom. 12(1), 125-169 (2014) · Zbl 1300.32021
[26] Stoppa, J.: K-stability of constant scalar curvature Kähler manifolds. Adv. Math. 221(4), 1397-1408 (2009) · Zbl 1181.53060 · doi:10.1016/j.aim.2009.02.013
[27] Székelyhidi, G.: Extremal metrics and \[{K}K\]-stability. PhD thesis. Imperial College, London (2006). · Zbl 1145.53055
[28] Székelyhidi, G.: Optimal test-configurations for toric varieties. J. Differ. Geom. 80(3), 501-523 (2008) · Zbl 1167.53063
[29] Székelyhidi, G.: The Calabi functional on a ruled surface. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 837-856 (2009). · Zbl 1187.58020
[30] Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 137, 1-37 (1997) · Zbl 0892.53027 · doi:10.1007/s002220050176
[31] Witt Nyström, D.: Test configurations and Okounkov bodies. Compos. Math. 148(6), 1736-1756 (2012) · Zbl 1276.14017
[32] Yau, S.-T.: Open problems in geometry. Proc. Symp. Pure Math. 54, 1-28 (1993) · Zbl 0801.53001 · doi:10.1090/pspum/054.1/1216573
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.