×

Kinks and travelling wave solutions for Burgers-like equations. (English) Zbl 1314.35154

Summary: In this work we develop a variety of Burgers-like equations. We show that these derived equations share some of the travelling wave solutions of the Burgers equation, and differ in some other solutions.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
Full Text: DOI

References:

[1] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theorem (2009), Springer and HEP: Springer and HEP Berlin · Zbl 1175.35001
[2] Wazwaz, A. M., A study on a \((2 + 1)\)-dimensional and a \((3 + 1)\)-dimensional generalized Burgers equations, Appl. Math. Lett., 31, 41-45 (2014) · Zbl 1311.35265
[3] Sen, A.; Ahalpara, D. P.; Thyagaraja, A.; Krishnaswami, G. S., A KdV-like advection-dispersion equation with some remarkable properties, Commun. Nonlinear Sci. Numer. Simul., 17, 4115-4124 (2012) · Zbl 1248.35191
[4] Kumar, S.; Wei, Le.; Zhang, X., Numerical study based on an implicit fully discreate local discontinuous Galerkin method for time fractional coupled Schrodinger system, Comput. Math. Appl., 64, 8, 2603-2615 (2012) · Zbl 1268.65139
[5] Kumar, S.; Wei, L.; He, Y., Numerical study based on an implicit fully discreate local discontinuous Galerkin method for time fractional KdV—Burgers Kuramoto equation, J. Appl. Math. Mech., 93, 1, 14-28 (2013) · Zbl 1263.65098
[6] Leblond, H.; Mihalache, D., Models of few optical cycle solitons beyond the slowly varying envelope approximation, Phys. Rep., 523, 61-126 (2013)
[7] Leblond, H.; Mihalache, D., Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models, Phys. Rev. A, 79, 063835 (2009)
[8] Dehghan, M.; Shakeri, F., Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New Astron., 13, 53-59 (2009)
[9] Dehghan, M.; Ghesmati, A., Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun., 181, 772-786 (2010) · Zbl 1205.65267
[10] Khalique, C. M.; Mahomed, F. M.; Muatjetjeja, B., Lagrangian formulation of a generalized Lane-Emden equation and double reduction, J. Nonlinear Math. Phys., 15, 152-161 (2008) · Zbl 1169.34033
[11] Khalique, C. M., On the solutions and conservation laws of a coupled Kadomtsev-Petviashvili equation, J. Appl. Math., 2013, 1-7 (2013) · Zbl 1266.35129
[12] Khalique, C. M.; Adem, K. R., Exact solutions of the \((2 + 1)\)-dimensional Zakharov-Kuznetsov modified equal width equation using Lie group analysis, Math. Comput. Modelling, 54, 1/2, 184-189 (2011) · Zbl 1225.35201
[13] Ebaid, A.; Wazwaz, A. M., On the generalized Exp-function method and its application to boundary layer flow at nano-scale, J. Comput. Theor. Nanosci., 11, 178-184 (2014)
[14] Wazwaz, A. M., A new fifth order nonlinear integrable equation: multiple soliton solutions, Phys. Scr., 83, 015012 (2011) · Zbl 1219.35214
[15] Wazwaz, A. M., A new generalized fifth order nonlinear integrable equation, Phys. Scr., 83, 035003 (2011) · Zbl 1228.35190
[16] Wazwaz, A. M., A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons, Phys. Scr., 86, 045501 (2012) · Zbl 1264.35201
[17] Wazwaz, A. M., Soliton solutions of the modified KdV6, modified \((2 + 1)\)-dimensional Boussinesq equation, and \((3 + 1)\)-dimensional KdV equation, J. Appl. Nonlinear Dyn., 95-104 (2014) · Zbl 1301.35143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.