×

A classification result on prime Hopf algebras of GK-dimension one. (English) Zbl 1508.16017

Let \(k\) be an algebraically closed field of characteristic zero. Three new families of Hopf algebras \(T(\mathbf{m},t,\xi)\), \(B(\mathbf{m},\omega,\gamma)\) and \(D(\mathbf{m},d,\gamma)\) are introduced. They depend on the choice of a so-called fraction of a positive integer, a positive integer and a primitive root of unity, satisfying certain conditions (different in each of the three cases). A fraction of length \(\theta\) of a positive integer \(m\) is a theta-tuple \(\mathbf{m}\in {\mathbb N}^\theta\) satisfying the conditions \((e_i,m_i)=1\), \(e_1\cdots e_\theta=m\) and \(\sum_i (a_i-b_i)m_i\not\in m{\mathbb Z}\) if \(\mathbf{a}\neq \mathbf{b}\) in \(A=\{\mathbf{a}\in {\mathcal N}^\theta~:~0\leq a_i<e_i\}\). Here \(e_i=\min\{a~:~m|am_i\}\). These three classes are known in the cases where \(\theta=1\), where we obtain the infinite dimensional Taft algebras , the generalised Liu algebras [K. A. Brown and J. J. Zhang, Proc. Lond. Math. Soc. (3) 101, No. 1, 260–302 (2010; Zbl 1207.16035)] and the algebras \(D(m,d,\gamma)\) introduced in [J. Wu et al., Adv. Math. 296, 1–54 (2016; Zbl 1350.16024)], see Sec. 2 for details.
The algebras \(T(\mathbf{m},t,\xi)\) and \(B(\mathbf{m},\omega,\gamma)\) have GK-dimension one and they are prime. Two algebras belonging to different classes are never isomorphic; two algebras belonging to the same class are isomorphic if certain conditions on the parameters are satisfied.
These examples lead to an improvement of the main result of [J. Wu et al., Adv. Math. 296, 1–54 (2016; Zbl 1350.16024)], in which the classification is given of all affine prime regular Hopf algebras of GK dimension one. Here regularity is replaced by the following two hypothesis:
(Hyp1) \(H\) has a one dimensional representation \(\pi_H:\ H\to k\) whose order is equal to the PI degree of \(H\);
(Hyp2): The invariant components with respect to \(\pi_H\) are domains.
The main result of the paper is Theorem 7.1 stating that a prime Hopf algebra of GK-dimension one satisfying (Hyp1) and (Hyp2) belongs to one of the three families of Hopf algebras \(T(\mathbf{m},t,\xi)\), \(B(\mathbf{m},\omega,\gamma)\) and \(D(\mathbf{m},d,\gamma)\). Several applications, consequences and examples are given throughout the paper.

MSC:

16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16T05 Hopf algebras and their applications
16P40 Noetherian rings and modules (associative rings and algebras)
16S34 Group rings

References:

[1] Andruskiewitsch, N.; Angiono, I. E., On Nichols algebras with generic braiding, (Modules and Comodules. Modules and Comodules, Trends Math. (2008), Birkhäuser Verlag: Birkhäuser Verlag Basel), 47-64 · Zbl 1227.16022
[2] Andruskiewitsch, N.; Angiono, I. E.; García Iglesias, A., Liftings of Nichols algebras of diagonal type I. Cartan type A, Int. Math. Res. Not., 9, 2793-2884 (2017) · Zbl 1405.16039
[3] Andruskiewitsch, N.; Angiono, I. E.; Heckenberger, I., On finite GK-dimensional Nichols algebras over Abelian groups, Mem. Amer. Math. Soc. (2019), to appear, see also
[4] Andruskiewitsch, N.; Schneider, H.-J., A characterization of quantum groups, J. Reine Angew. Math., 577, 81-104 (2004) · Zbl 1084.16027
[5] Andruskiewitsch, N.; Schneider, H.-J., On the classification of finite-dimensional pointed Hopf algebras, Ann. Math. (2), 171, 1, 375-417 (2010) · Zbl 1208.16028
[6] Andruskiewitsch, N.; Schneider, H.-J., Lifting of quantum linear spaces and pointed Hopf algebras of order \(p^3\), J. Algebra, 209, 658-691 (1998) · Zbl 0919.16027
[7] Angiono, I. E., On Nichols algebras of diagonal type, J. Reine Angew. Math., 683, 189-251 (2013) · Zbl 1331.16023
[8] Barrett, W.; Westbury, W., Spherical categories, Adv. Math., 143, 2, 357-375 (1999) · Zbl 0930.18004
[9] Brown, K. A.; Couto, M., Affine commutative-by-finite Hopf algebras · Zbl 1467.16032
[10] Brown, K. A.; Gilmartin, P.; Zhang, J. J., Connected (graded) Hopf algebras, Trans. Am. Math. Soc., 372, 3283-3317 (2019) · Zbl 1478.16019
[11] Brown, K. A., Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, (Trends in the Representation Theory of Finite-Dimensional Algebras. Trends in the Representation Theory of Finite-Dimensional Algebras, Seattle, WA, 1997. Trends in the Representation Theory of Finite-Dimensional Algebras. Trends in the Representation Theory of Finite-Dimensional Algebras, Seattle, WA, 1997, Contemp. Math., vol. 229 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 49-79 · Zbl 0926.16028
[12] Brown, K. A.; Zhang, J. J., Prime regular Hopf algebras of GK-dimension one, Proc. Lond. Math. Soc. (3), 101, 260-302 (2010) · Zbl 1207.16035
[13] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs, vol. 205 (2015), American Mathematical Society: American Mathematical Society Providence, RI, xvi+343 pp · Zbl 1365.18001
[14] Goodearl, K. R., Noetherian Hopf algebras, Glasg. Math. J., 55, 75-87 (2013) · Zbl 1292.16023
[15] Goodearl, K. R.; Zhang, J. J., Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, J. Algebra, 324, 11, 3131-3168 (2010) · Zbl 1228.16030
[16] Heckenberger, I., The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math., 164, 1, 175-188 (2006) · Zbl 1174.17011
[17] Heckenberger, I., Classification of arithmetic root systems, Adv. Math., 220, 1, 59-124 (2009) · Zbl 1176.17011
[18] Humphreys, J. E., Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21 (1975), Springer: Springer New York · Zbl 0325.20039
[19] Kassel, C., Quantum Groups, GTM, vol. 155 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0808.17003
[20] Liu, Gongxiang, On Noetherian affine prime regular Hopf algebras of Gelfand-Kirillov dimension 1, Proc. Am. Math. Soc., 137, 777-785 (2009) · Zbl 1175.16025
[21] Lu, D.-M.; Wu, Q.-S.; Zhang, J. J., Homological integral of Hopf algebras, Trans. Am. Math. Soc., 359, 4945-4975 (2007) · Zbl 1145.16022
[22] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings (1987), Wiley: Wiley Chichester · Zbl 0644.16008
[23] Majid, S., Cross products by braided groups and bosonization, J. Algebra, 163, 1, 165-190 (1994) · Zbl 0807.16036
[24] Montgomery, S., Hopf Algebra and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, vol. 82 (1993), Providence, RI
[25] Radford, D., The structure of Hopf algebras with a projection, J. Algebra, 92, 2, 322-347 (1985) · Zbl 0549.16003
[26] Rosso, M., Quantum groups and quantum shuffles, Invent. Math., 133, 2, 399-416 (1998) · Zbl 0912.17005
[27] Small, L. W.; Stafford, J. T.; Warfield, R. B., Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Camb. Philos. Soc., 97, 407-414 (1985) · Zbl 0561.16005
[28] Wang, D.-G.; Zhang, J. J.; Zhuang, G.-B., Lower bounds of growth of Hopf algebras, Trans. Am. Math. Soc., 365, 4963-4986 (2013) · Zbl 1286.16030
[29] Wang, D.-G.; Zhang, J. J.; Zhuang, G.-B., Hopf algebras of GK-dimension two with vanishing Ext-group, J. Algebra, 388, 219-247 (2013) · Zbl 1355.16033
[30] Wang, D.-G.; Zhang, J. J.; Zhuang, G.-B., Connected Hopf algebras of Gelfand-Kirillov dimension four, Trans. Am. Math. Soc., 367, 5597-5632 (2015) · Zbl 1330.16022
[31] Wu, Jingyong, Note on the coradical filtration of \(D(m, d, \xi)\), Commun. Algebra, 44, 11, 4844-4850 (2016) · Zbl 1350.16023
[32] Wu, J.; Liu, G.; Ding, N., Classification of affine prime regular Hopf algebras of GK-dimension one, Adv. Math., 296, 1-54 (2016) · Zbl 1350.16024
[33] Wu, Q.-S.; Zhang, J. J., Noetherian PI Hopf algebras are Gorenstein, Trans. Am. Math. Soc., 355, 3, 1043-1066 (2003) · Zbl 1019.16028
[34] Zhou, G.-S.; Shen, Y.; Lu, D.-M., The structure of connected (graded) Hopf algebras · Zbl 1452.16033
[35] Zhuang, G.-B., Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, J. Lond. Math. Soc. (2), 87, 3, 877-898 (2013) · Zbl 1365.16018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.