×

Connected (graded) Hopf algebras. (English) Zbl 1478.16019

Summary: We study algebraic and homological properties of two classes of infinite-dimensional Hopf algebras over an algebraically closed field \(k\) of characteristic 0. The first class consists of those Hopf \(k\)-algebras that are connected graded as algebras, and the second class are those Hopf \(k\)-algebras that are connected as coalgebras. For many but not all of the results presented here, the Hopf algebras are assumed to have finite Gel’fand-Kirillov dimension. It is shown that if the Hopf algebra \(H\) is a connected graded Hopf algebra of finite Gel’fand-Kirillov dimension \(n\), then \(H\) is a noetherian domain which is Cohen-Macaulay, Artin-Schelter regular, and Auslander regular of global dimension \(n\). It has \(S^2 = \mathrm{Id}_H\), and it is Calabi-Yau. Detailed information is also provided about the Hilbert series of \(H\). Our results leave open the possibility that the first class of algebras is (properly) contained in the second. For this second class, the Hopf \(k\)-algebras of finite Gel’fand-Kirillov dimension \(n\) with connected coalgebra, the underlying coalgebra is shown to be Artin-Schelter regular of global dimension \(n\). Both these classes of Hopf algebras share many features in common with enveloping algebras of finite-dimensional Lie algebras. For example, an algebra in either of these classes satisfies a polynomial identity only if it is a commutative polynomial algebra. Nevertheless, we construct, as one of our main results, an example of a Hopf \(k\)-algebra \(H\) of Gel’fand-Kirillov dimension 5, which is connected graded as an algebra and connected as a coalgebra, but is not isomorphic as an algebra to \(U(\mathfrak{g})\) for any Lie algebra \(\mathfrak{g}\).

MSC:

16T05 Hopf algebras and their applications
16W50 Graded rings and modules (associative rings and algebras)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
20G42 Quantum groups (quantized function algebras) and their representations

References:

[1] Alev, Jacques; Ooms, Alfons; Van den Bergh, Michel, A class of counterexamples to the Gel’fand-Kirillov conjecture, Trans. Amer. Math. Soc., 348, 5, 1709-1716 (1996) · Zbl 0853.17006 · doi:10.1090/S0002-9947-96-01465-1
[2] Andruskiewitsch, Nicol\'{a}s; Schneider, Hans-J\"{u}rgen, Pointed Hopf algebras. New directions in Hopf algebras, Math. Sci. Res. Inst. Publ. 43, 1-68 (2002), Cambridge Univ. Press, Cambridge · Zbl 1146.46041 · doi:10.2977/prims/1199403805
[3] Andruskiewitsch, Nicol\'{a}s; Schneider, Hans-J\"{u}rgen, Finite quantum groups and Cartan matrices, Adv. Math., 154, 1, 1-45 (2000) · Zbl 1007.16027 · doi:10.1006/aima.1999.1880
[4] Benson, D. J., Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series 190, x+118 pp. (1993), Cambridge University Press, Cambridge · Zbl 0864.13001 · doi:10.1017/CBO9780511565809
[5] Brown, Kenneth A., Representation theory of Noetherian Hopf algebras satisfying a polynomial identity. Trends in the representation theory of finite-dimensional algebras, Seattle, WA, 1997, Contemp. Math. 229, 49-79 (1998), Amer. Math. Soc., Providence, RI · Zbl 0926.16028 · doi:10.1090/conm/229/03310
[6] Brown, Kenneth A., Noetherian Hopf algebras, Turkish J. Math., 31, suppl., 7-23 (2007) · Zbl 1142.16025
[7] Brown, Kenneth A.; Gilmartin, Paul, Hopf algebras under finiteness conditions, Palest. J. Math., 3, Special issue, 356-365 (2014) · Zbl 1351.16032
[8] Brown, Ken; Gilmartin, Paul, Quantum homogeneous spaces of connected Hopf algebras, J. Algebra, 454, 400-432 (2016) · Zbl 1380.16029 · doi:10.1016/j.jalgebra.2016.01.030
[9] Brown, K. A.; O’Hagan, S.; Zhang, J. J.; Zhuang, G., Connected Hopf algebras and iterated Ore extensions, J. Pure Appl. Algebra, 219, 6, 2405-2433 (2015) · Zbl 1312.16031 · doi:10.1016/j.jpaa.2014.09.007
[10] Brown, K. A.; Zhang, J. J., Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, J. Algebra, 320, 5, 1814-1850 (2008) · Zbl 1159.16009 · doi:10.1016/j.jalgebra.2007.03.050
[11] Etingof, Pavel; Gelaki, Shlomo, Quasisymmetric and unipotent tensor categories, Math. Res. Lett., 15, 5, 857-866 (2008) · Zbl 1168.18003 · doi:10.4310/MRL.2008.v15.n5.a3
[12] F\'{e}lix, Yves; Halperin, Stephen; Thomas, Jean-Claude, Elliptic Hopf algebras, J. London Math. Soc. (2), 43, 3, 545-555 (1991) · Zbl 0755.57018 · doi:10.1112/jlms/s2-43.3.545
[13] F\'{e}lix, Yves; Halperin, Stephen; Thomas, Jean-Claude, Hopf algebras of polynomial growth, J. Algebra, 125, 2, 408-417 (1989) · Zbl 0676.16008 · doi:10.1016/0021-8693(89)90173-7
[14] M.-P. Gong, Classification of Nilpotent Lie Algebras of Dimension 7, Ph.D. Thesis,\linebreak University of Waterloo, 1998.
[15] Goodearl, K. R., Noetherian Hopf algebras, Glasg. Math. J., 55, A, 75-87 (2013) · Zbl 1292.16023 · doi:10.1017/S0017089513000517
[16] Goodearl, K. R.; Zhang, J. J., Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, J. Algebra, 324, 11, 3131-3168 (2010) · Zbl 1228.16030 · doi:10.1016/j.jalgebra.2009.11.001
[17] He, J.-W.; Torrecillas, B.; Van Oystaeyen, F.; Zhang, Y., Dualizing complexes of Noetherian complete algebras via coalgebras, Comm. Algebra, 42, 1, 271-285 (2014) · Zbl 1336.16033 · doi:10.1080/00927872.2012.713063
[18] Humphreys, James E., Linear algebraic groups, xiv+247 pp. (1975), Springer-Verlag, New York-Heidelberg · Zbl 0325.20039
[19] Krause, G\"{u}nter R.; Lenagan, Thomas H., Growth of algebras and Gelfand-Kirillov dimension, Graduate Studies in Mathematics 22, x+212 pp. (2000), American Mathematical Society, Providence, RI · Zbl 0957.16001
[20] Laty\v{s}ev, V. N., Two remarks on \(PI\)-algebras, Sibirsk. Mat. \v{Z}., 4, 1120-1121 (1963) · Zbl 0128.25804
[21] Lazard, Michel, Sur la nilpotence de certains groupes alg\'{e}briques, C. R. Acad. Sci. Paris, 241, 1687-1689 (1955) · Zbl 0065.25401
[22] Levasseur, Thierry, Some properties of noncommutative regular graded rings, Glasgow Math. J., 34, 3, 277-300 (1992) · Zbl 0824.16032 · doi:10.1017/S0017089500008843
[23] Li, Huishi; van Oystaeyen, Freddy, Zariskian filtrations, \(K\)-Monographs in Mathematics 2, x+252 pp. (1996), Kluwer Academic Publishers, Dordrecht · Zbl 0862.16027
[24] Li, Hui Shi; Van Oystaeyen, F., Zariskian filtrations, Comm. Algebra, 17, 12, 2945-2970 (1989) · Zbl 0691.16003 · doi:10.1080/00927878908823888
[25] Lu, D.-M.; Palmieri, J. H.; Wu, Q.-S.; Zhang, J. J., Regular algebras of dimension 4 and their \(A_\infty \)-Ext-algebras, Duke Math. J., 137, 3, 537-584 (2007) · Zbl 1193.16014 · doi:10.1215/S0012-7094-07-13734-7
[26] Lu, D.-M.; Wu, Q.-S.; Zhang, J. J., Homological integral of Hopf algebras, Trans. Amer. Math. Soc., 359, 10, 4945-4975 (2007) · Zbl 1145.16022 · doi:10.1090/S0002-9947-07-04159-1
[27] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), xvi+596 pp. (1987), John Wiley & Sons, Ltd., Chichester · Zbl 0644.16008
[28] Milnor, John, The Steenrod algebra and its dual, Ann. of Math. (2), 67, 150-171 (1958) · Zbl 0080.38003 · doi:10.2307/1969932
[29] Milnor, John W.; Moore, John C., On the structure of Hopf algebras, Ann. of Math. (2), 81, 211-264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[30] Molnar, Richard K., A commutative Noetherian Hopf algebra over a field is finitely generated, Proc. Amer. Math. Soc., 51, 501-502 (1975) · Zbl 0308.16006 · doi:10.2307/2040349
[31] Montgomery, Susan, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics 82, xiv+238 pp. (1993), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI · Zbl 0793.16029 · doi:10.1090/cbms/082
[32] Nastasescu, C.; Torrecillas, B.; Zhang, Y. H., Hereditary coalgebras, Comm. Algebra, 24, 4, 1521-1528 (1996) · Zbl 0855.16035 · doi:10.1080/00927879608825649
[33] Passman, D. S., Enveloping algebras satisfying a polynomial identity, J. Algebra, 134, 2, 469-490 (1990) · Zbl 0713.16013 · doi:10.1016/0021-8693(90)90062-S
[34] Reyes, Manuel; Rogalski, Daniel; Zhang, James J., Skew Calabi-Yau algebras and homological identities, Adv. Math., 264, 308-354 (2014) · Zbl 1336.16011 · doi:10.1016/j.aim.2014.07.010
[35] Riley, David; Usefi, Hamid, The isomorphism problem for universal enveloping algebras of Lie algebras, Algebr. Represent. Theory, 10, 6, 517-532 (2007) · Zbl 1192.17005 · doi:10.1007/s10468-007-9083-0
[36] Schneider, Peter; Venjakob, Otmar, On the codimension of modules over skew power series rings with applications to Iwasawa algebras, J. Pure Appl. Algebra, 204, 2, 349-367 (2006) · Zbl 1143.16038 · doi:10.1016/j.jpaa.2005.05.007
[37] Wang, D.-G.; Zhang, J. J.; Zhuang, G., Connected Hopf algebras of Gelfand-Kirillov dimension four, Trans. Amer. Math. Soc., 367, 8, 5597-5632 (2015) · Zbl 1330.16022 · doi:10.1090/S0002-9947-2015-06219-9
[38] Wang, D.-G.; Zhang, J. J.; Zhuang, G., Primitive cohomology of Hopf algebras, J. Algebra, 464, 36-96 (2016) · Zbl 1402.16019 · doi:10.1016/j.jalgebra.2016.07.003
[39] Wang, D.-G.; Zhang, J. J.; Zhuang, G., Coassociative Lie algebras, Glasg. Math. J., 55, A, 195-215 (2013) · Zbl 1334.17010 · doi:10.1017/S001708951300058X
[40] Waterhouse, William C., Introduction to affine group schemes, Graduate Texts in Mathematics 66, xi+164 pp. (1979), Springer-Verlag, New York-Berlin · Zbl 0442.14017
[41] Wu, Q.-S.; Zhang, J. J., Gorenstein property of Hopf graded algebras, Glasg. Math. J., 45, 1, 111-115 (2003) · Zbl 1045.16021 · doi:10.1017/S0017089502001052
[42] Wu, Q.-S.; Zhang, J. J., Noetherian PI Hopf algebras are Gorenstein, Trans. Amer. Math. Soc., 355, 3, 1043-1066 (2003) · Zbl 1019.16028 · doi:10.1090/S0002-9947-02-03106-9
[43] Zassenhaus, Hans, The representations of Lie algebras of prime characteristic, Proc. Glasgow Math. Assoc., 2, 1-36 (1954) · Zbl 0059.03001
[44] Zhuang, Guangbin, Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, J. Lond. Math. Soc. (2), 87, 3, 877-898 (2013) · Zbl 1365.16018 · doi:10.1112/jlms/jds079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.