×

Comparative study of post-impact motion control of a flexible arm space robot. (English) Zbl 1507.93160

Summary: Designing a controller to manipulate a flexible space robot is hampered by the inherent complex nonlinear dynamics. Furthermore, the collision of a space robot with an external object in the space environment often leads to degradation of the space robot system. Therefore, an effective control algorithm is necessary for a successful space robot mission to regulate the motion of the entire system after an impact. This paper presents a comparative study on the performance of two different composite controllers to control post-impact motion of the space robot with two-link flexible arms. A performance comparison study helps to choose a better controller to carry out specific tasks. The dynamics of a space robot with flexible manipulators are highly nonlinear and coupled, hence split into rigid and flexible motion to make the control design easier. In this paper, two different composite controllers, namely nonlinear model predictive control with a linear quadratic regulator (NMPC-LQR) and sliding mode control with linear quadratic regulator (SMC-LQR) are developed. NMPC and SMC are used to control rigid motion of the system, while LQR is used to suppress the flexible motion. The objective of the proposed controllers is to regulate the motion of the entire space robot system, including the flexible manipulator, after impact with an external object. The effectiveness of the proposed composite controllers is demonstrated using numerical simulations. Simulation results confirm that, in the absence of uncertainties, the performance of the control system using the proposed NMPC-LQR is more accurate compared to using SMC-LQR. Furthermore, given uncertainties of mass and inertia of the system, we find NMPC-LQR provides a higher level of accuracy when compared to SMC-LQR.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93B45 Model predictive control
93B12 Variable structure systems
93C10 Nonlinear systems in control theory
49N10 Linear-quadratic optimal control problems
Full Text: DOI

References:

[1] Bdirina, K.; Hajer, R.; Boucherit, M.; Djoudi, D.; Rabehi, D., One step ahead nonlinear predictive control of two links robot manipulators, International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 1219-1223 (2012)
[2] Chen, G.; Liu, D.; Wang, Y.; Jia, Q.; Liu, X., Contact force minimization for space flexible manipulators based on effective mass, J. Guid. Control Dyn., 42, 8, 1870-1877 (2019)
[3] Chen, Y.; Meirovitch, L., Control of a flexible space robot executing a docking maneuver, J. Dyn. Syst. Meas. Control, 18, 4, 756-766 (1995) · Zbl 0850.93620
[4] Chien, M.; Huang, A., Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties, IEEE Trans. Ind. Electron., 54, 2, 1032-1038 (2007)
[5] Curti, F.; Romano, M.; Bevilacqua, R., Lyapunov-based thrusters’ selection for spacecraft control: analysis and experimentation, J. Guid. Control Dyn., 33, 4, 1143-1160 (2010)
[6] Dimitrov, D.; Yoshida, K., Momentum distribution in a space manipulator for facilitating the post-impact control, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 4, 3345-3350 (2004)
[7] Dong, Q.; Chen, L., Impact dynamics analysis of free-floating space manipulator capturing satellite on orbit and robust adaptive compound control algorithm design for suppressing motion, Appl. Math. Mech., 35, 2010, 413-422 (2014) · Zbl 1294.70019
[8] Dubowsky, S.; Papadopoulos, E., The kinematics, dynamics, and control of free- flying and free-floating space robotic systems, IEEE Trans. Rob. Autom., 9, 5, 531-543 (1993)
[9] Dwivedy, S. K.; Eberhard, P., Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theory, 41, 7, 749-777 (2006) · Zbl 1095.70005
[10] Fan, T., Intelligent model predictive control of flexible link robotic manipulators (2007), University of British Columbia, Ph.D. thesis
[11] Fan, T.; Silva, C. W.D., Intelligent model predictive control of a flexible-link robotic manipulator, ASME 2005 International Mechanical Engineering Congress and Exposition, 1019-1025 (2005)
[12] Fan, T.; Silva, C. W.D., Dynamic modelling and model predictive control of flexible-link manipulators, Int. J. Rob. Autom., 23, 4 (2008)
[13] Findeisen, R.; Imsland, L.; Allgo, F.; Foss, B. A., State and output feedback nonlinear model predictive control: an overview, Eur. J. Control, 190-206 (2003) · Zbl 1293.93288
[14] Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S., A review of space robotics technologies for on-orbit servicing, Prog. Aerosp. Sci., 68, 1-26 (2014)
[15] Giordano, A. M.; Ott, C.; Albu-Schäffer, A., Coordinated control of spacecraft’s attitude and end-effector for space robots, IEEE Rob. Autom. Lett., 4, 2, 2108-2115 (2019)
[16] Hedjar, R.; Boucher, P., Nonlinear receding-horizon control of rigid link robot manipulators, Int. J. Adv. Rob. Syst., 2, 1, 015-024 (2005)
[17] Henmi, T.; Deng, M.; Inoue, A., Adaptive control of a two-link planar manipulator using nonlinear model predictive control, 2010 IEEE International Conference on Mechatronics and Automation (ICMA), 1868-1873 (2010)
[18] Henmi, T.; Ohta, T.; Deng, M.; Inoue, A., Tracking control of the two-link manipulator using nonlinear model predictive control, ICNSC’09: International Conference on Networking, Sensing and Control, 761-766 (2009)
[19] Holkar, K. S.; Waghmare, L. M., An overview of model predictive control, Int. J. Control Autom., 3, 4, 47-63 (2010)
[20] Hu, J.; Ding, B., One-step ahead robust MPC for LPV model with bounded disturbance, Eur. J. Control, 52, 59-66 (2020) · Zbl 1431.93021
[21] Huang, P.; Wang, D.; Zhang, F.; Meng, Z.; Liu, Z., Postcapture robust nonlinear control for tethered space robot with constraints on actuator and velocity of space tether, Int. J. Robust Nonlinear Control, 27, 16, 2824-2841 (2017) · Zbl 1386.93204
[22] Huang, P.; Xu, Y.; Liang, B., Contact and impact dynamics of space manipulator and free-flying target, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 1935-1940 (2005)
[23] Jing, Z.; Xu, Q.; Huang, J., A review on kinematic analysis and dynamic stable control of space flexible manipulators, Aerosp. Syst., 2, 1, 1-14 (2019)
[24] Kawai, Y.; Endo, T.; Matsuno, F., Cooperative control of large flexible space structure by two planar robots, IET Control Theory Appl., 15, 5, 771-783 (2021)
[25] Kayastha, S.; Shi, L.; Katupitiya, J.; Pearce, G., Nonlinear model predictive control of a planar three-link space manipulator, Control Conference (ASCC), 2017 11th Asian, 635-640 (2017)
[26] Kayastha, S.; Shi, L.; Katupitiya, J.; Pearce, G., Post-impact motion control of a space robot with flexible manipulator, 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), 710-715 (2018)
[27] Khalil, W.; Dombre, E., Modeling Identification and Control of Robots (2002), CRC Press · Zbl 1023.70001
[28] Lawrence, J. A.; Stephen, M. R., Adaptive control of a flexible-link robotic manipulator with unknown payload dynamics, 1993 American Control Conference, 2088-2092 (1993)
[29] Li, X.; Wu, L., Impact motion control of a flexible dual-arm space robot for capturing a spinning object, Int. J. Adv. Rob. Syst., 16, 3 (2019)
[30] Liu, S.; Wu, L.; Lu, Z., Impact dynamics and control of a flexible dual-arm space robot capturing an object, Appl. Math. Compuat., 185, 1149-1159 (2007) · Zbl 1142.70306
[31] Lochan, K.; Roy, B. K.; Subudhi, B., A review on two-link flexible manipulators, Annu. Rev. Control, 42, 346-367 (2016)
[32] Lu, P., Approximate nonlinear receding-horizon control laws in closed form, Int. J. Control, 71, 1, 19-34 (1998) · Zbl 0961.93018
[33] Ma, G.; Jiang, Z.; Li, H.; Gao, J.; Yu, Z.; Chen, X.; Liu, Y.; Huang, Q., Hand-eye servo and impedance control for manipulator arm to capture target satellite safely, Robotica, 33, 4, 848-864 (2015)
[34] Masoudi, R.; Mahzoon, M., Maneuvering and vibrations control of a free-floating space robot with flexible arms, J. Dyn. Syst. Meas. Control, 133, 5, 051001 (2011)
[35] Meirovitch, L.; Chen, Y., Trajectory and control optimization for flexible space robots, J. Guid. Control Dyn., 18, 3, 493-502 (1995)
[36] Meirovitch, L.; Lim, S., Maneuvering and control of flexible space robots, J. Guid. Control Dyn., 17, 3, 520-528 (1994) · Zbl 0925.93648
[37] Meng, D.; She, Y.; Xu, W.; Lu, W.; Liang, B., Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator, Multibody Syst. Dyn., 43, 4, 321-347 (2018) · Zbl 1423.70031
[38] Nenchev, D. N.; Yoshida, K., Impact analysis and post-impact motion control issues of a free-floating space robot subject to a force impulse, IEEE Trans. Rob. Autom., 15, 3, 548-557 (1999)
[39] Papadopoulos, E.; Aghili, F.; Ma, O.; Lampariello, R., Robotic manipulation and capture in space: a survey, Front. Rob. AI, 8, 228 (2021)
[40] Poignet, P.; Gautier, M., Nonlinear model predictive control of a robot manipulator, 6th International Workshop on Advanced Motion Control. Proceedings, 401-406 (2000)
[41] Raina, D.; Gora, S.; Maheshwari, D.; Shah, S. V., Impact modeling and reactionless control for post-capturing and maneuvering of orbiting objects using a multi-arm space robot, Acta Astronaut., 182, 21-36 (2021)
[42] Rybus, T.; Seweryn, K.; Sasiadek, J. Z., Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC), J. Intell. Rob. Syst., 85, 3, 491-509 (2017)
[43] Senda, K.; Murotsu, Y., Methodology for control of a space robot with flexible links, IEE Proc.-Control Theory Appl., 147, 6, 562-568 (2000)
[44] Shi, L.; Katupitiya, J.; Kinkaid, N., A robust attitude controller for a spacecraft equipped with a robotic manipulator, Proceedings of the American Control Conference 2016, 4966-4971 (2016)
[45] Shi, L.; Kayastha, S.; Katupitiya, J., Robust coordinated control of a dual-arm space robot, Acta Astronaut., 138, 475-489 (2017)
[46] first ed.
[47] Stansbery, D.; Cloutier, J., Position and attitude control of a spacecraft using the state-dependent Riccati equation technique, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), vol. 3, 1867-1871 (2000)
[48] Talebi, H. A.; Patel, R. V.; Khorasani, K., Control of Flexible-Link Manipulators using Neural Networks, Vol. 261 (2001), Springer Science & Business Media · Zbl 1099.93001
[49] Theodore, R. J.; Ghosal, A., Comparison of the assumed modes and finite element models for flexible multilink manipulators, Int. J. Rob. Res., 14, 2, 91-111 (1995)
[50] Waqar, A.; Adeel, M.; Khurram, A.; Usman, J.; Soltan, A. A.; Jamshed, I., Nonlinear control of a flexible joint robotic manipulator with experimental validation, Strojniški Vestnik-J. Mech. Eng., 64, 47-55 (2018)
[51] Yang, X.; Ge, S. S.; He, W., Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances, Int. J. Control, 91, 4, 969-988 (2017)
[52] Yang, X.; Ge, S. S.; Liu, J., Dynamics and noncollocated model-free position control for a space robot with multi-link flexible manipulators, Asian J. Control, 21, 2, 714-724 (2019) · Zbl 1422.93123
[53] Yoshida, K., Space robot dynamics and control: a historical perspective, J. Rob. Mechatron., 12, 4, 402-410 (2000)
[54] Yu, X. Y., Augmented robust control of a free-floating flexible space robot, proceedings of the institution of mechanical engineers, J. Aerosp. Eng. Part G, 229, 5, 947-957 (2015)
[55] Yu, X. Y.; Chen, L., Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators, Acta Astronaut., 108, 146-155 (2015)
[56] Yu, X. Y.; Chen, L., Singular perturbation augmented robust control and vibration suppression of free-floating flexible space manipulators, Proceedings of the 14th IFToMM World Congress, 211-216 (2015)
[57] Zhang, Z.; Wang, W. Q.; Siddiqui, S., Predictive function control of a two-link robot manipulator, Mechatronics and Automation, 2005 IEEE International Conference, vol. 4, 2004-2009 (2005)
[58] Zheng, K.; Hu, Y.; Wu, B., Intelligent fuzzy sliding mode control for complex robot system with disturbances, Eur. J. Control, 51, 95-109 (2020) · Zbl 1429.93211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.