×

Symmetric Fermi projections and Kitaev’s table: topological phases of matter in low dimensions. (English) Zbl 1507.82074

Summary: We review A. Kitaev’s celebrated “periodic table” for topological phases of condensed matter [AIP Conf. Proc. 1134, 22–30 (2009; Zbl 1180.82221)], which identifies ground states (Fermi projections) of gapped periodic quantum systems up to continuous deformations. We study families of projections that depend on a periodic crystal momentum and respect the symmetries that characterize the various classes of topological insulators. Our aim is to classify such families in a systematic, explicit, and constructive way: we identify numerical indices for all symmetry classes and provide algorithms to deform families of projections whose indices agree. Aiming at simplicity, we illustrate the method for zero- and one-dimensional systems and recover the (weak and strong) topological invariants proposed by Kitaev and others.
©2022 American Institute of Physics

MSC:

82D20 Statistical mechanics of solids
81V70 Many-body theory; quantum Hall effect
82D25 Statistical mechanics of crystals
57Z05 Relations of manifolds and cell complexes with physics

Citations:

Zbl 1180.82221

References:

[1] Altland, A.; Zirnbauer, M. R., Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B, 55, 1142-1161 (1997) · doi:10.1103/physrevb.55.1142
[2] Autonne, L., Sur les Matrices Hypohermitiennes et sur les Matrices Unitaires (1915), A. Rey · JFM 44.0147.01
[3] Bott, R., An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. Fr., 79, 251-281 (1956) · Zbl 0073.40001 · doi:10.24033/bsmf.1472
[4] Bourne, C.; Carey, A. L.; Rennie, A., A non-commutative framework for topological insulators, Rev. Math. Phys., 28, 2, 1650004 (2016) · Zbl 1364.81269 · doi:10.1142/s0129055x16500045
[5] Cartan, E., Sur une classe remarquable d’espaces de Riemann. I, Bull. Soc. Math. Fr., 54, 214-264 (1926) · JFM 53.0390.01 · doi:10.24033/bsmf.1105
[6] Cartan, E., Sur une classe remarquable d’espaces de Riemann. II, Bull. Soc. Math. Fr., 55, 114-134 (1927) · doi:10.24033/bsmf.1113
[7] Cornean, H. D.; Monaco, D.; Teufel, S., Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators, Rev. Math. Phys., 29, 2, 1730001 (2017) · Zbl 1370.81081 · doi:10.1142/s0129055x17300011
[8] de la Cruz, R. J.; Fassbender, H., On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation, Linear Algebra Appl., 496, 288-306 (2016) · Zbl 1332.15030 · doi:10.1016/j.laa.2016.01.030
[9] De Nittis, G.; Gomi, K., Classification of ‘real’ Bloch-bundles: Topological quantum systems of type AI, J. Geom. Phys., 86, 303-338 (2014) · Zbl 1316.57019 · doi:10.1016/j.geomphys.2014.07.036
[10] De Nittis, G.; Gomi, K., Chiral vector bundles, Math. Z., 290, 775-830 (2015) · Zbl 1411.57044 · doi:10.1007/s00209-018-2041-1
[11] De Nittis, G.; Gomi, K., Classification of ‘quaternionic’ Bloch-bundles: Topological quantum systems of type AII, Commun. Math. Phys., 339, 1-55 (2015) · Zbl 1326.57047 · doi:10.1007/s00220-015-2390-0
[12] De Nittis, G.; Gomi, K., The cohomology invariant for class DIII topological insulators (2021)
[13] Fiorenza, D.; Monaco, D.; Panati, G., Construction of real-valued localized composite Wannier functions for insulators, Ann. Henri Poincaré, 17, 63-97 (2016) · Zbl 1338.82057 · doi:10.1007/s00023-015-0400-6
[14] Fiorenza, D.; Monaco, D.; Panati, G., invariants of topological insulators as geometric obstructions, Commun. Math. Phys., 343, 1115-1157 (2016) · Zbl 1346.81158 · doi:10.1007/s00220-015-2552-0
[15] Gontier, D.; Levitt, A.; Siraj-Dine, S., Numerical construction of Wannier functions through homotopy, J. Math. Phys., 60, 031901 (2019) · Zbl 1417.82030 · doi:10.1063/1.5085753
[16] Graf, G. M.; Porta, M., Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 3, 851-895 (2013) · Zbl 1291.82120 · doi:10.1007/s00220-013-1819-6
[17] Grossmann, J.; Schulz-Baldes, H., Index pairings in presence of symmetries with applications to topological insulators, Commun. Math. Phys., 343, 2, 477-513 (2015) · Zbl 1348.82083 · doi:10.1007/s00220-015-2530-6
[18] Hall, B., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (2015), Springer · Zbl 1316.22001
[19] Heinzner, P.; Huckleberry, A.; Zirnbauer, M. R., Symmetry classes of disordered fermions, Commun. Math. Phys., 257, 725-771 (2005) · Zbl 1092.82020 · doi:10.1007/s00220-005-1330-9
[20] Horn, R. A.; Johnson, C. R., Matrix Analysis (2013), Cambridge University Press · Zbl 1267.15001
[21] Hua, L.-K., On the theory of automorphic functions of a matrix variable I—Geometrical basis, Am. J. Math., 66, 470-488 (1944) · Zbl 0063.02919 · doi:10.2307/2371910
[22] Husemöller, D., Fibre Bundles (1994), Springer-Verlag: Springer-Verlag, New York
[23] Ikramov, K. D.; Fassbender, H., Several observations on symplectic, Hamiltonian, and skew-Hamiltonian matrices, Linear Algebra Appl., 400, 15-29 (2005) · Zbl 1077.15010 · doi:10.1016/j.laa.2004.12.012
[24] Kennedy, R.; Guggenheim, C., Homotopy theory of strong and weak topological insulators, Phys. Rev. B, 91, 245148 (2015) · doi:10.1103/physrevb.91.245148
[25] Kennedy, R.; Zirnbauer, M. R., Bott periodicity for \(\mathbb{Z}_2\) symmetric ground states of gapped free-fermion systems, Commun. Math. Phys., 342, 909-963 (2016) · Zbl 1346.81159 · doi:10.1007/s00220-015-2512-8
[26] Kitaev, A. Y., Unpaired Majorana fermions in quantum wires, Phys.-Usp., 44, 131 (2001) · doi:10.1070/1063-7869/44/10s/s29
[27] Kitaev, A. Y., Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 22-30 (2009) · Zbl 1180.82221 · doi:10.1063/1.3149495
[28] Kuchment, P., An overview of periodic elliptic operators, Bull. Am. Math. Soc., 53, 343-414 (2016) · Zbl 1346.35170 · doi:10.1090/bull/1528
[29] Monaco, D.; Tauber, C., Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess-Zumino, and Fu-Kane-Mele, Lett. Math. Phys., 107, 7, 1315-1343 (2017) · Zbl 1370.35093 · doi:10.1007/s11005-017-0946-y
[30] Panati, G., Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré, 8, 5, 995-1011 (2007) · Zbl 1375.81102 · doi:10.1007/s00023-007-0326-8
[31] Prodan, E.; Schulz-Baldes, H., Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics (2016), Springer: Springer, Cham · Zbl 1342.82002
[32] Ryu, S.; Schnyder, A. P.; Furusaki, A.; Ludwig, A. W. W., Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys., 12, 6, 065010 (2010) · doi:10.1088/1367-2630/12/6/065010
[33] Teo, J. C. Y.; Kane, C. L., Topological defects and gapless modes in insulators and superconductors, Phys. Rev. B, 82, 11, 115120 (2010) · doi:10.1103/physrevb.82.115120
[34] Thiang, G. C., On the K-theoretic classification of topological phases of matter, Ann. Henri Poincaré, 17, 4, 757-794 (2015) · Zbl 1344.81144 · doi:10.1007/s00023-015-0418-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.