×

On the diagonalizability of a matrix by a symplectic equivalence, similarity or congruence transformation. (English) Zbl 1332.15030

Summary: A symplectic matrix \(S\in\mathbb C^{2n\times 2n}\) satisfies \(S=J^{-1}S^T\) \(J\) for \(J=\left[\begin{smallmatrix} 0 & I_n \\ -I_n & 0\end{smallmatrix}\right]\in\mathbb R^{2n\times 2n}\). We will consider symplectic equivalence, similarity and congruence transformations and answer the question under which conditions a \(2n\times 2n\) matrix is diagonalizable under one of these transformations. In particular, we will give symplectic analogues of the singular value decomposition and the Takagi factorization.

MSC:

15A21 Canonical forms, reductions, classification
15A23 Factorization of matrices
Full Text: DOI

References:

[1] de la Cruz, R. J., Each symplectic matrix is a product of four symplectic involutions, Linear Algebra Appl., 466, 382-400 (2015) · Zbl 1310.15020
[2] De la Cruz, R. J.; Merino, D. I.; Paras, A. T., The \(\phi_S\) polar decomposition of matrices, Linear Algebra Appl., 434, 4-13 (2011) · Zbl 1205.15025
[5] Fassbender, H.; Mackey, D. S.; Mackey, N.; Xu, H., Hamiltonian square roots of skew-Hamiltonian matrices, Linear Algebra Appl., 287, 125-159 (1999) · Zbl 0940.15017
[6] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press New York, NY · Zbl 0576.15001
[7] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press · Zbl 0729.15001
[8] Horn, R. A.; Merino, D. I., Contragradient equivalence: a canonical form and some applications, Linear Algebra Appl., 214, 43-92 (1995) · Zbl 0817.15005
[10] Ikramov, K., Hamiltonian square roots of skew-Hamiltonian matrices revisited, Linear Algebra Appl., 325, 101-107 (2001) · Zbl 0978.15010
[11] Mackey, D. S.; Mackey, N.; Tisseur, F., Structured tools for structured matrices, Electron. J. Linear Algebra, 10, 106-145 (2003) · Zbl 1027.15013
[12] Mackey, D. S.; Mackey, N.; Tisseur, F., Structured factorization in scalar product spaces, SIAM J. Matrix Anal. Appl., 27, 3, 821-850 (2006) · Zbl 1098.15005
[13] Mehl, C., On classification of normal matrices in indefinite inner product spaces, Electron. J. Linear Algebra, 15, 50-83 (2006) · Zbl 1095.15010
[14] Merino, D. I.; Paras, A. T.; Pelejo, D. P., On the \(\phi_J\) polar decomposition of matrices, Linear Algebra Appl., 432, 1165-1175 (2010) · Zbl 1189.15014
[15] Waterhouse, W., The structure of alternating-Hamiltonian matrices, Linear Algebra Appl., 396, 385-390 (2005) · Zbl 1066.15025
[16] Xu, H., An SVD-like matrix decomposition and its applications, Linear Algebra Appl., 368, 1-24 (2003) · Zbl 1025.15016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.