×

Counting equilibria in a random non-gradient dynamics with heterogeneous relaxation rates. (English) Zbl 1507.82030

J. Phys. A, Math. Theor. 55, No. 14, Article ID 144001, 39 p. (2022); corrigendum ibid. 55, No. 24, Article ID 249501, 2 p. (2022).
Summary: We consider a nonlinear autonomous random dynamical system of \(N\) degrees of freedom coupled by Gaussian random interactions and characterized by a continuous spectrum \(n_\mu(\lambda)\) of real positive relaxation rates. Using Kac-Rice formalism, the computation of annealed complexities (both of stable equilibria and of all types of equilibria) is reduced to evaluating the averages involving the modulus of the determinant of the random Jacobian matrix. In the limit of large system \(N\gg1\) we derive exact analytical results for the complexities for short-range correlated coupling fields, extending results previously obtained for the ‘homogeneous’ relaxation spectrum characterised by a single relaxation rate. We show the emergence of a ‘topology trivialisation’ transition from a complex phase with exponentially many equilibria to a simple phase with a single equilibrium as the magnitude of the random field is decreased. Within the complex phase the complexity of stable equilibria undergoes an additional transition from a phase with exponentially small probability to find a single stable equilibrium to a phase with exponentially many stable equilibria as the fraction of gradient component of the field is increased. The behaviour of the complexity at the transition is found only to depend on the small \(\lambda\) behaviour of the spectrum of relaxation rates \(n_\mu(\lambda)\) and thus conjectured to be universal. We also provide some insights into a counting problem motivated by a paper [“Propagation of nonlinear waves in disordered media”, J. Opt. Soc. Am. B 21, No. 1, 177–182 (2004; doi:10.1364/JOSAB.21.000177)] of B. Spivak and A. Zyuzin of 2004 about wave scattering in a disordered nonlinear medium.

MSC:

82B26 Phase transitions (general) in equilibrium statistical mechanics
60B20 Random matrices (probabilistic aspects)
37H20 Bifurcation theory for random and stochastic dynamical systems
82M22 Spectral, collocation and related (meshless) methods applied to problems in statistical mechanics

References:

[1] May, R. M., Will a large complex system be stable?, Nature, 238, 413-414 (1972) · doi:10.1038/238413a0
[2] Haldane, A. G.; May, R. M., Systemic risk in banking ecosystems, Nature, 469, 351-355 (2011) · doi:10.1038/nature09659
[3] Farmer, J. D.; Skouras, S., An ecological perspective on the future of computer trading, Quant. Finance, 13, 325-346 (2013) · doi:10.1080/14697688.2012.757636
[4] Moran, J.; Bouchaud, J-P, May’s instability in large economies, Phys. Rev. E, 100 (2019) · doi:10.1103/PhysRevE.100.032307
[5] Allesina, S.; Tang, S., The stability-complexity relationship at age 40: a random matrix perspective, Popul. Ecol., 57, 63-75 (2015) · doi:10.1007/s10144-014-0471-0
[6] Mergny, P.; Majumdar, S. N., Stability of large complex systems with heterogeneous relaxation dynamics (2021) · Zbl 1539.82096
[7] Wainrib, G.; Touboul, J., Topological and dynamical complexity of random neural networks, Phys. Rev. Lett., 110 (2013) · doi:10.1103/physrevlett.110.118101
[8] Fyodorov, Y. V.; Khoruzhenko, B. A., Non-linear analogue of the May-Wigner transition, Proc. Natl Acad. Sci. USA, 113, 6827-6832 (2016) · Zbl 1355.92139 · doi:10.1073/pnas.1601136113
[9] Fyodorov, Y. V., Topology trivialization transition in random non-gradient autonomous ODEs on a sphere, J. Stat. Mech. (2016) · Zbl 1456.82913 · doi:10.1088/1742-5468/aa511a
[10] Arous, G. B.; Fyodorov, Y. V.; Khoruzhenko, B. A., Counting equilibria of large complex systems by instability index, Proc. Natl Acad. Sci. USA, 118 (2021) · doi:10.1073/pnas.2023719118
[11] Fedeli, S. B.; Fyodorov, Y. V.; Ipsen, J. R., Nonlinearity-generated resilience in large complex systems, Phys. Rev. E, 103 (2021) · doi:10.1103/physreve.103.022201
[12] Ipsen, J. R., May-Wigner transition in large random dynamical systems, J. Stat. Mech. (2017) · Zbl 1456.60149 · doi:10.1088/1742-5468/aa8704
[13] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech. (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/p05012
[14] Bouchbinder, E.; Lerner, E.; Rainone, C.; Urbani, P.; Zamponi, F., Low-frequency vibrational spectrum of mean-field disordered systems, Phys. Rev. B, 103 (2021) · doi:10.1103/physrevb.103.174202
[15] Folena, G.; Urbani, P., Marginal stability of soft anharmonic mean field spin glasses (2021)
[16] Masoumi, A.; Vilenkin, A.; Yamada, M., Inflation in multi-field random Gaussian landscapes, J. Cosmol. Astropart. Phys. (2017) · Zbl 1515.83403 · doi:10.1088/1475-7516/2017/12/035
[17] Feng, L. L.; Hotchkiss, S.; Easther, R., The distribution of vacua in random landscape potentials, J. Cosmol. Astropart. Phys. (2021) · Zbl 1484.83115 · doi:10.1088/1475-7516/2021/01/029
[18] Choromanska, A.; LeCun, Y.; Arous, G. B., Open problem: the landscape of the loss surfaces of multilayer networks, vol 40, 1756-1760 (2015)
[19] Baskerville, N. P.; Keating, J. P.; Mezzadri, F.; Najnudel, J., The loss surfaces of neural networks with general activation functions, J. Stat. Mech. (2021) · Zbl 1539.82374 · doi:10.1088/1742-5468/abfa1e
[20] Arous, G. B.; Mei, S.; Montanari, A.; Nica, M., The landscape of the spiked tensor model, Commun. Pure Appl. Math., 72, 2282-2330 (2019) · Zbl 1434.62078 · doi:10.1002/cpa.21861
[21] Ros, V.; Arous, G. B.; Biroli, G.; Cammarota, C., Complex energy landscapes in spiked-tensor and simple glassy models: ruggedness, arrangements of local minima, and phase transitions, Phys. Rev. X, 9 (2020) · doi:10.1103/PhysRevX.9.011003
[22] Fyodorov, Y. V.; Tublin, R., Counting stationary points of the loss function in the simplest constrained least-square optimization, Acta Phys. Pol. B, 51, 1663-1672 (2020) · Zbl 07913336 · doi:10.5506/aphyspolb.51.1663
[23] Maillard, A.; Arous, G. B.; Biroli, G., Landscape complexity for the empirical risk of generalized linear models, vol 107, 287-327 (2020)
[24] Cavagna, A.; Giardina, I.; Parisi, G., Stationary points of the Thouless-Anderson-Palmer free energy, Phys. Rev. B, 57, 11251-11257 (1998) · doi:10.1103/physrevb.57.11251
[25] Cavagna, A.; Garrahan, J. P.; Giardina, I., Quenched complexity of the mean-field p-spin spherical model with external magnetic field, J. Phys. A: Math. Gen., 32, 711-723 (1999) · Zbl 0964.82055 · doi:10.1088/0305-4470/32/5/004
[26] Fyodorov, Y. V.; Fyodorov, Y. V., Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices, Phys. Rev. Lett.. Phys. Rev. Lett., 93, 149901(E) (2004) · doi:10.1103/physrevlett.93.149901
[27] Bray, A. J.; Dean, D. S., Statistics of critical points of Gaussian fields on large-dimensional spaces, Phys. Rev. Lett., 98 (2007) · doi:10.1103/physrevlett.98.150201
[28] Fyodorov, Y. V.; Williams, I., Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity, J. Stat. Phys., 129, 1081-1116 (2007) · Zbl 1156.82355 · doi:10.1007/s10955-007-9386-x
[29] Fyodorov, Y. V.; Nadal, C., Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy-Widom distribution, Phys. Rev. Lett., 109 (2012) · doi:10.1103/physrevlett.109.167203
[30] Grela, J.; Khoruzhenko, B. A., Glass-like transition described by toppling of stability hierarchy (2021)
[31] Fyodorov, Y. V., High-dimensional random fields and random matrix theory, Markov Process. Relat. Fields, 21, 483-518 (2015)
[32] Fyodorov, Y. V.; Le Doussal, P., Hessian spectrum at the global minimum of high-dimensional random landscapes, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1411.82047 · doi:10.1088/1751-8121/aae74f
[33] Auffinger, A.; Arous, G. B.; Černý, J., Random matrices and complexity of spin glasses, Commun. Pure Appl. Math., 66, 165-201 (2013) · Zbl 1269.82066 · doi:10.1002/cpa.21422
[34] Auffinger, A.; Arous, G. B., Complexity of random smooth functions on the high-dimensional sphere, Ann. Probab., 41, 4214-4247 (2013) · Zbl 1288.15045 · doi:10.1214/13-aop862
[35] Fyodorov, Y. V.; Le Doussal, P., Topology trivialization and large deviations for the minimum in the simplest random optimization, J. Stat. Phys., 154, 466-490 (2014) · Zbl 1291.82127 · doi:10.1007/s10955-013-0838-1
[36] Belius, D.; Černý, J.; Nakajima, S.; Schmidt, M., Triviality of the geometry of mixed p-spin spherical Hamiltonians with external field (2021)
[37] Subag, E., The complexity of spherical p-spin model—a second moment approach, Ann. Probab., 45, 3385-3450 (2017) · Zbl 1417.60029 · doi:10.1214/16-aop1139
[38] Subag, E.; Zeitouni, O., The extremal process of critical points of the pure p-spin spherical spin glass model, Probab. Theor. Relat. Field, 168, 773-820 (2017) · Zbl 1390.60180 · doi:10.1007/s00440-016-0724-2
[39] Subag, E., Free energy landscapes in spherical spin glasses (2018)
[40] Auffinger, A.; Gold, J., The number of saddles of the spherical p-spin model (2020)
[41] Subag, E., The free energy of spherical pure p-spin models—computation from the TAP approach (2021)
[42] Subag, E.; Zeitouni, O., Concentration of the complexity of spherical pure p-spin models at arbitrary energies (2021)
[43] Ros, V., Distribution of rare saddles in the p-spin energy landscape, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.82222 · doi:10.1088/1751-8121/ab73ac
[44] Fyodorov, Y. V.; Le Doussal, P.; Rosso, A.; Texier, C., Exponential number of equilibria and depinning threshold for a directed polymer in a random potential, Ann. Phys., NY, 397, 1-64 (2018) · Zbl 1397.82062 · doi:10.1016/j.aop.2018.07.029
[45] Fyodorov, Y. V.; Le Doussal, P., Manifolds in a high-dimensional random landscape: complexity of stationary points and depinning, Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.020101
[46] Arous, G. B.; Bourgade, P.; McKenna, B., Landscape complexity beyond invariance and the elastic manifold (2021)
[47] Arous, G. B.; Bourgade, P.; McKenna, B., Exponential growth of random determinants beyond invariance (2021)
[48] Spivak, B.; Zyuzin, A., Propagation of nonlinear waves in disordered media, J. Opt. Soc. Am. B, 21, 177 (2004) · doi:10.1364/josab.21.000177
[49] Maillard, A., The Kac-Rice formula: basic definitions and a first application
[50] Khoruzhenko, B., Large-N eigenvalue distribution of randomly perturbed asymmetric matrices, J. Phys. A: Math. Gen., 29, L165 (1996) · Zbl 0917.60035 · doi:10.1088/0305-4470/29/7/003
[51] Forrester, P. J., Log-Gases and Random Matrices (2010), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1217.82003
[52] Berezin, F. A.; Berezin, F. A., Some remarks on Wigner distribution. Some remarks on Wigner distribution, Teor. Mat. Fiz.. Theor. Math. Phys., 17, 1163-1171 (1974) · Zbl 0291.60017 · doi:10.1007/bf01037593
[53] Pastur, L., On the spectrum of random matrices, Theor. Math. Phys., 10, 67-74 (1972) · doi:10.1007/bf01035768
[54] Fyodorov, Y. V.; Khoruzhenko, B. A., On absolute moments of characteristic polynomials of a certain class of complex random matrices, Commun. Math. Phys., 273, 561-599 (2007) · Zbl 1185.15033 · doi:10.1007/s00220-007-0270-y
[55] Feinberg, J.; Zee, A., Non-Gaussian non-Hermitian random matrix theory: phase transition and addition formalism, Nucl. Phys. B, 501, 643 (1997) · Zbl 0933.82024 · doi:10.1016/s0550-3213(97)00419-7
[56] Guionnet, A.; Krishnapur, M.; Zeitouni, O., The single ring theorem, Ann. Math., 174, 1189-1217 (2011) · Zbl 1239.15018 · doi:10.4007/annals.2011.174.2.10
[57] Fyodorov, Y. V.; Khoruzhenko, B. A., Averages of spectral determinants and ‘single ring theorem’ of Feinberg and Zee, Acta Phys. Pol. B, 38, 4067-4077 (2007) · Zbl 1371.82076
[58] Tarnowski, W.; Yusipov, I.; Laptyeva, T.; Denisov, S.; Chruściński, D.; Życzkowski, K., Random generators of Markovian evolution: a quantum-classical transition by superdecoherence (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.