×

A FIC-FEM procedure for the shallow water equations over partially wet domains. (English) Zbl 1507.76117

Summary: We present a stable finite element formulation for the shallow water equations using the finite increment calculus (FIC) procedure. This research is focused on the stability properties of the FIC technique and uses linear triangles for the spatial discretization with an equal order of interpolation for all the variables. The extension to higher order polynomial interpolation functions and different geometries is straightforward. The present FIC-FEM procedure is also able to introduce artificial viscosity for an adequate shock capturing. An implicit time integration has been used. Special attention has been payed to the dry domain in order to solve the moving boundaries with a fixed mesh eulerian approach. Three academic examples are included in order to test the capabilities of the FIC-FEM procedure: the global stabilization, the shock capturing technique and the dry-wet interface. An experimental benchmark tests the overall accuracy of the present formulation.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

SWASHES
Full Text: DOI

References:

[1] Zienkiewicz, O. C.; Taylor, R. L., Finite Element Method: Fluid dynamics, Vol. 3 (2000), Butterworth-Heinemann · Zbl 0991.74004
[2] Navon, I., Finite-element simulation of the shallow-water equations model on a limited-area domain, Appl. Math. Model., 3, 5, 337-348 (1979) · Zbl 0438.76017
[3] Navon, I. M., A review of finite-element methods for solving the shallow-water equations, Comput. Modelling Ocean Eng., 273-278 (1988)
[4] Hood, P.; Taylor, C., Navier Stokes Equations using Mixed Interpolation. Finite-Element Methods in Flow Problems (1974), Huntsville Press
[5] Ortiz, P., Non-oscillatory continuous FEM for transport and shallow water flows, Comput. Methods Appl. Mech. Engrg., s 223-224, 55-69 (2012) · Zbl 1253.76064
[6] Ambati, V.; Bokhove, O., Space-time discontinuous Galerkin finite element method for shallow water flows, J. Comput. Appl. Math., 204, 2, 452-462 (2007), Special Issue: The Seventh International Conference on Mathematical and Numerical Aspects of Waves (WAVES’05) · Zbl 1117.35322
[7] Khan, A. A.; Lai, W., Modeling Shallow Water Flows using the Discontinuous Galerkin Method (2014), CRC Press · Zbl 1292.76002
[8] Lee, H., Implicit discontinuous Galerkin scheme for shallow water equations, J. Mech. Sci. Technol., 33 (2019)
[9] Brooks, A.; Hughes, T., Streamline Upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng. (1982) · Zbl 0497.76041
[10] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 156, 1, 185-210 (1998) · Zbl 0959.76040
[11] Hughes, T. J.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 2, 173-189 (1989) · Zbl 0697.76100
[12] Oñate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L., A finite point method in computational mechanics. Applications to convective transport and fluid flow, Internat. J. Numer. Methods Engrg., 39, 22, 3839-3866 (1996) · Zbl 0884.76068
[13] Oñate, E., Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Engrg., 151, 1, 233-265 (1998), Containing papers presented at the Symposium on Advances in Computational Mechanics · Zbl 0916.76060
[14] Oñate, E., Possibilities of finite calculus in computational mechanics, Internat. J. Numer. Methods Engrg., 60, 1, 255-281 (2004) · Zbl 1060.76576
[15] Codina, R., Finite element approximation of the hyperbolic wave equation in mixed form, Comput. Methods Appl. Mech. Engrg., 197, 13 (2008) · Zbl 1162.65388
[16] Hughes, T. J.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 3, 329-336 (1986) · Zbl 0587.76120
[17] Codina, R., Finite element approximation of the convection-diffusion equation: Subgrid-scale spaces, local instabilities and anisotropic space-time discretizations, (Clavero, C.; Gracia, J. L.; Lisbona, F. J., BAIL 2010 - Boundary and Interior Layers, Computational and Asymptotic Methods (2011), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 85-97
[18] Cotela-Dalmau, J.; Rossi, R.; Oñate, E., A FIC-based stabilized finite element formulation for turbulent flows, Comput. Methods Appl. Mech. Engrg., 315 (2016) · Zbl 1439.65111
[19] Leclerc, M.; cois Bellemare, J.-F.; Dumas, G.; Dhatt, G., A finite element model of estuarian and river flows with moving boundaries, Adv. Water Resour., 13, 4, 158-168 (1990)
[20] Heniche, M.; Secretan, Y.; Boudreau, P.; Leclerc, M., A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries, Adv. Water Resour., 23, 4, 359-372 (2000)
[21] Candy, A. S., An implicit wetting and drying approach for non-hydrostatic baroclinic flows in high aspect ratio domains, Adv. Water Resour., 102, 188-205 (2017)
[22] Barros, M. L.C.; Rosman, P. C.C.; Telles, J. C.F.; Azevedo, J. P.S., A simple wetting and drying method for shallow water flow with application in the Vitória Bay estuary, Brazil, (Water Resources Management VI, Vol. 145 (2011)), 215-225
[23] Defina, A., Two-dimensional shallow flow equations for partially dry areas, Water Resour. Res.- WATER RESOUR. RES., 36 (2000)
[24] Abbott, M. B., Computational Hydraulics : Elements of the Theory of Free Surface Flows / M.B. Abbott, xviii, 324 (1979), Belmont, Calif: Belmont, Calif Pitman Pub. ; Fearon-Pitman Publishers London · Zbl 0406.76002
[25] Chow, V. T.; Maidment, D. R.; May, L. W., (Applied Hydrology. Applied Hydrology, McGraw-Hill Series in Water Resources and Environmental Engineering (1988), McGraw-Hill Book Company: McGraw-Hill Book Company New York)
[26] Castellet, E. B., Modelación del flujo en lámina libre sobre cauces naturales. Análisis integrado con esquemas en volúmenes finitos en una y dos mensiones (2005), Universitat Politécnica de Catalunya, (Ph.D. thesis)
[27] Raviart, P.-A.; Godlewski, E., (Numerical Approximation of Hyperbolic Systems of Conservation Laws. Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118 (1996), Springer: Springer New York, NY) · Zbl 0860.65075
[28] Codina, R.; González-Ondina, J. M.; Díaz-Hernández, G.; Principe, J., Finite element approximation of the modified Boussinesq equations using a stabilized formulation, Internat. J. Numer. Methods Fluids, 57, 9, 1249-1268 (2008) · Zbl 1140.76016
[29] Bercovier, M.; Pironneau, O., Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33, 211-224 (1979) · Zbl 0423.65058
[30] Curtiss, C. F.; Hirschfelder, J. O., Integration of stiff equations, Proc. Natl. Acad. Sci. USA, 38, 3, 235-243 (1952) · Zbl 0046.13602
[31] Brayton, R.; Gustavson, F.; Hachtel, G., A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas, Proc. IEEE, 60, 1, 98-108 (1972)
[32] Kurganov, A.; Petrova, G., A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5 (2007) · Zbl 1226.76008
[33] Badia, S.; Hierro, A., On monotonicity-preserving stabilized finite element approximations of transport problems, SIAM J. Sci. Comput., 36, 6 (2014) · Zbl 1312.65143
[34] Dadvand, P.; Rossi, R.; Oñate, E., An object-oriented environment for developing finite element codes for multi-disciplinary applications, Arch. Comput. Methods Eng., 17, 3 (2010) · Zbl 1360.76130
[35] Dadvand, P.; Rossi, R.; Gil, M.; Martorell, X.; Cotela, J.; Juanpere, E.; Idelsohn, S.; nate, E. O., Migration of a generic multi-physics framework to HPC environments, Comput. & Fluids, 80 (2013) · Zbl 1426.76644
[36] Delestre, O.; Lucas, C.; Ksinant, P.-A.; Darboux, F.; Laguerre, C.; Vo, T.-N.-T.; James, F.; Cordier, S., SWASHES: A compilation of shallow water analytic solutions for hydraulic and environmental studies, Internat. J. Numer. Methods Fluids, 72, 269-300 (2013), arXiv:1110.0288 · Zbl 1455.76005
[37] MacDonald, I.; Baines, M. J.; Nichols, N. K.; Samuels, P. G., Analytic benchmark solutions for open-channel flows, J. Hydraul. Eng., 123, 11, 1041-1045 (1997)
[38] ao, S. S.-F.; Zech, Y., Experimental study of dam-break flow against an isolated obstacle, J. Hydraul. Res., 45, sup1, 27-36 (2007)
[39] Hughes, T. J., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 1, 387-401 (1995) · Zbl 0866.76044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.