×

Assessment of turbulence models using DNS data of compressible plane free shear layer flow. (English) Zbl 1507.76078

Summary: The present paper uses the detailed flow data produced by direct numerical simulation (DNS) of a three-dimensional, spatially developing plane free shear layer to assess several commonly used turbulence models in compressible flows. The free shear layer is generated by two parallel streams separated by a splitter plate, with a naturally developing inflow condition. The DNS is conducted using a high-order discontinuous spectral element method (DSEM) for various convective Mach numbers. The DNS results are employed to provide insights into turbulence modelling. The analyses show that with the knowledge of the Reynolds velocity fluctuations and averages, the considered strong Reynolds analogy models can accurately predict temperature fluctuations and Favre velocity averages, while the extended strong Reynolds analogy models can correctly estimate the Favre velocity fluctuations and the Favre shear stress. The pressure-dilatation correlation and dilatational dissipation models overestimate the corresponding DNS results, especially with high compressibility. The pressure-strain correlation models perform excellently for most pressure-strain correlation components, while the compressibility modification model gives poor predictions. The results of an a priori test for subgrid-scale (SGS) models are also reported. The scale similarity and gradient models, which are non-eddy viscosity models, can accurately reproduce SGS stresses in terms of structure and magnitude. The dynamic Smagorinsky model, an eddy viscosity model but based on the scale similarity concept, shows acceptable correlation coefficients between the DNS and modelled SGS stresses. Finally, the Smagorinsky model, a purely dissipative model, yields low correlation coefficients and unacceptable accumulated errors.

MSC:

76F50 Compressibility effects in turbulence
76F10 Shear flows and turbulence
76F65 Direct numerical and large eddy simulation of turbulence
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Bardina, J., Ferziger, J.H. & Reynolds, W.C.1980 Improved subgrid scale models for large eddy simulation. AIAA Paper 80-1357.
[2] Barre, S. & Bonnet, J.P.2015Detailed experimental study of a highly compressible supersonic turbulent plane mixing layer and comparison with most recent DNS results: “towards an accurate description of compressibility effects in supersonic free shear flows”. Intl J. Heat Fluid Flow51, 324-334.
[3] Barre, S., Quine, C. & Dussauge, J.P.1994Compressibility effects on the structure of supersonic mixing layers: experimental results. J. Fluid Mech.259, 47-78.
[4] Bogdanoff, D.W.1983Compressibility effects in turbulent shear layers. AIAA J.21, 926-927.
[5] Bouffanais, R., Deville, M.O., Fischer, P.F., Leriche, E. & Weill, D.2006Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. J. Sci. Comput.27, 151-162. · Zbl 1099.76026
[6] Bradshaw, P.1966The effect of initial conditions on the development of a free shear layer. J. Fluid Mech.26, 225-236.
[7] Bradshaw, P.1977Compressible turbulent shear layers. Annu. Rev. Fluid Mech.9, 33-54. · Zbl 0412.76049
[8] Brown, C.S., Shaver, D.R., Lahey, R.T. & Bolotnov, I.A.2017Wall-resolved spectral cascade-transport turbulence model. Nucl. Sci. Engng320, 309-324.
[9] Burton, G.C. & Dahm, W.J.A.2005Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Phys. Fluids17, 075111. · Zbl 1187.76078
[10] Carlson, J.2005 Assessment of an explicit algebraic Reynolds stress model. NASA, Langley Research Center, Hampton, Virginia TM-2005-213771.
[11] Carpenter, M.H. & Kennedy, C.A.1994 Fourth-order 2N-storage Runge-Kutta schemes. NASA TM 109112.
[12] Cebeci, T. & Smith, A.M.O.1974Analysis of Turbulent Boundary Layers. Academic Press, Inc. · Zbl 0342.76014
[13] Cecora, R.D., Eisfeld, B., Probst, A., Crippa, S. & Radespiel, R.2012 Differential Reynolds stress modeling for aeronautics. AIAA Paper 2012-0465.
[14] Clark, R.A., Ferziger, J.H. & Reynolds, W.C.1979Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech.91, 1-16. · Zbl 0394.76052
[15] Daly, B.J. & Harlow, F.H.1970Transport equations of turbulence. Phys. Fluids13, 2634-2649.
[16] Deardroff, J.W.1970A numerical study of three-dimensional turbulence channel flow at large Reynolds number. J. Fluid Mech.41, 452-456.
[17] Duan, L. & Martin, M.P.2011Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech.684, 25-59. · Zbl 1241.76277
[18] Dudek, J.C. & Carlson, J.2017 Evaluation of full Reynolds stress turbulence models in FUN3D. NASA, Langley Research Center, Hampton, Virginia TM-2017-219468.
[19] El Baz, A.M.E.L. & Launder, B.E.1993 Second-moment modelling of compressible mixing layers. In Engineering Turbulence Modelling and Experiments, pp. 63-72. Elsevier.
[20] Favre, A.1965 The equations of compressible turbulent gases. Annual Summary Report AD0622097.
[21] Favre, A.1969 Statistical equations of turbulent gases. In Problems of Hydrodynamics and Continuum Mechanics, pp. 231-266. SIAM.
[22] Favre, A.1983Turbulence: space-time statistical properties and behavior in supersonic flows. Phys. Fluids26, 2851-2863. · Zbl 0524.76069
[23] Fujiwara, H., Matsuo, Y. & Arakawa, C.2000A turbulence model for the pressure-strain correlation term accounting for compressibility effects. Intl J. Heat Fluid Flow21, 354-358.
[24] Gaviglio, J.1987Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer30, 911-926. · Zbl 0623.76068
[25] Germano, M., Piomelli, U., Moin, P. & Cabot, W.H.1991A dynamic subgrid scale eddy viscosity model. Phys. Fluids A3 (7), 1760-1765. · Zbl 0825.76334
[26] Ghiasi, Z., Komperda, J., Li, D., Peyvan, A., Nicholls, D. & Mashayek, F.2019Modal explicit filtering for large eddy simulation in discontinuous spectral element method. J. Comput. Phys.: X3, 100024. · Zbl 1461.76297
[27] Ghosal, S., Lund, T., Moin, P. & Akselvol, K.1995A dynamic localisation model for large-eddy simulation of turbulent flows. J. Fluid Mech.286, 229-255. · Zbl 0837.76032
[28] Ghosal, S. & Moin, P.1995The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys.118, 24-37. · Zbl 0822.76069
[29] Girimaji, S.S.2000Pressure-strain correlation modelling of complex turbulent flows. J. Fluid Mech.422, 91-123. · Zbl 1003.76037
[30] Goebel, S.G. & Dutton, J.C.1991Experimental study of compressible turbulent mixing layers. AIAA J.29, 538-546.
[31] Gross, N., Blaisdell, G.A. & Lyrintzis, A.S.2011 Analysis of modified compressibility corrections for turbulence models. AIAA Paper 2011-279.
[32] Gruber, M.R., Messersmith, N.L. & Dutton, J.C.1993Three-dimensional velocity field in a compressible mixing layer. AIAA J.31, 2061-2067.
[33] Gullbrand, J. & Chow, F.K.2003The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech.495, 323-341. · Zbl 1077.76032
[34] Haase, W., Aupoix, B., Bunge, U. & Schwamborn, D.2006 FLOMANIA - a European initiative on flow physics modelling. In Notes on Numerical Fluid Mechanics and Multidisiplinary Design, vol. 218. Springer. · Zbl 1100.76001
[35] Hanjalic, K. & Launder, B.E.1976Contribution towards a Reynolds-stress closure for low-Reynolds- number turbulence. J. Fluid Mech.74, 593-610. · Zbl 0325.76067
[36] Huang, P.G., Coleman, G.N. & Bradshaw, P.1995Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.305, 185-218. · Zbl 0857.76036
[37] Hwang, R.R. & Jaw, S.Y.1998Second-order closure turbulence models: their achievements and limitations. Proc. Natl Sci. Counc. ROC(A)22, 703-722.
[38] Jacobs, G.B.2003 Numerical simulation of two-phase turbulent compressible flows with a multidomain spectral method. Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL.
[39] Jacobs, G.B., Kopriva, D.A. & Mashayek, F.2003A comparison of outflow boundary conditions for the multidomain staggered-grid spectral method. Numer. Heat Transfer B44 (3), 225-251.
[40] Jacobs, G.B., Kopriva, D.A. & Mashayek, F.2005Validation study of a multidomain spectral code for simulation of turbulent flows. AIAA J.43, 1256-1264.
[41] Jaw, S.Y. & Chen, C.J.1998aPresent status of second-order closure turbulence models. I: overview. J. Engng Mech.124, 485-501.
[42] Jaw, S.Y. & Chen, C.J.1998bPresent status of second order closure turbulence models. II: applications. J. Engng Mech.124, 502-512.
[43] Jiménez, J.2004 Turbulence and vortex dynamics. Notes for the Polytechnic Course on Turbulence. École Polytechnique, Paris.
[44] Komperda, J., Ghiasi, Z., Li, D., Peyvan, A., Jaberi, F. & Mashayek, F.2020A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows. Numer. Heat Transfer B-Fund.78, 1-29.
[45] Kopriva, D.A.1998A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations. J. Comput. Phys.143, 125-158. · Zbl 0921.76121
[46] Kopriva, D.A. & Kolias, J.H.1996A conservative staggerd-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys.125, 244-261. · Zbl 0847.76069
[47] Launder, B.E.1989Second-moment closure: present \(\cdots\) and future?Intl J. Heat Fluid Flow10, 282-300.
[48] Launder, B.E., Reece, G.J. & Rodi, W.1975Progress in the development of Reynolds stress turbulence closure. J. Fluid Mech.68, 537-566. · Zbl 0301.76030
[49] Lele, S.K.1994Compressibility effects on turbulence. Annu. Rev. Fluid Mech.26, 211-254. · Zbl 0802.76032
[50] Leonard, A.1975Energy cascade in large eddy simulation of turbulent fluid flow. Adv. Geophys.18, 237-248.
[51] Leonard, A.1997 Large eddy simulation of chaotic convection and beyond. AIAA Paper 97-0204.
[52] Li, D., Komperda, J., Ghiasi, Z., Peyvan, A. & Mashayek, F.2019Compressibility effects on the transition to turbulence in spatially developing plane free shear layer. Theor. Comput. Fluid Dyn.33, 577-602. · Zbl 1461.76297
[53] Li, D., Peyvan, A., Ghiasi, Z., Komperda, J. & Mashayek, F.2021Compressibility effects on energy exchange mechanisms in a spatially developing plane free shear layer. J. Fluid Mech.910, A9. · Zbl 1461.76297
[54] Lilly, D.K.1966 On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 123.
[55] Lilly, D.K.1992A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A4, 633-635.
[56] Liu, S., Meneveau, C. & Katz, J.1994On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech.275, 83-119.
[57] Love, M.D.1980Subgrid modelling studies with Burgers’ equation. J. Fluid Mech.100, 87-100. · Zbl 0441.76022
[58] Lu, H., Rutland, C.J. & Smith, L.M.2007Correlation and causation. J. Turbul.8, 1-27. · Zbl 1273.76211
[59] Moin, P., Squires, K., Cabot, W. & Lee, S.1991A dynamic subgrid model for compressible turbulence and scalar transport. Phys. Fluids A3, 2746-2757. · Zbl 0753.76074
[60] Morkovin, M.V.1962 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. A.J. Favre), pp. 367-380. CNRS.
[61] Nicoud, F. & Ducros, F.1999Subgrid-scale stress modelling based on the square of the velocity gradient. Flow Turbul. Combust.62, 183-200. · Zbl 0980.76036
[62] Nicoud, F., Toda, H.B., Cabrit, O., Bose, S. & Lee, J.2011Using singular values to build a subgrid-scale model for large eddy simulation. Phys. Fluids23, 085106.
[63] Okong’o, N. & Bellan, J.2004Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1. Direct numerical simulation, formulation and a priori analysis. J. Fluid Mech.499, 1-47. · Zbl 1081.76563
[64] Pantano, C. & Sarkar, S.2002A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech.451, 329-371. · Zbl 1156.76403
[65] Piomelli, U., Cabot, W.H., Moin, P. & Lee, S.1990 Subgrid-scale backscatter in transitional and turbulent flows. In Proceedings of the 1990 Summer Program, pp. 19-30. Center for Turbulence Research. · Zbl 0825.76335
[66] Piomelli, U., Cabot, W.H., Moin, P. & Lee, S.1991Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A3 (7), 1766-1771. · Zbl 0825.76335
[67] Piomelli, U. & Zang, T.A.1991Large-eddy simulation of transitional channel flow. Comput. Phys. Commun.65, 224-230. · Zbl 0900.76079
[68] Pope, S.B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[69] Reynolds, O.1895On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. A186, 123-164. · JFM 26.0872.02
[70] Ristorcelli, J.R., Lumley, J.L. & Abid, R.1995A rapid-pressure covariance representation consistent with the Taylor-Proudman theorem materially frame indifferent in two-dimensional limit. J. Fluid Mech.298, 211-248. · Zbl 0843.76041
[71] Sarkar, S., Erlebacher, G. & Hussaini, M.Y.1992 Compressible homogeneous shear: simulation and modeling. NASA, Langley Research Center, Hampton, Virginia NAS1-18605. · Zbl 0874.76030
[72] Sarkar, S., Erlebacher, G., Hussaini, M.Y. & Kreiss, H.O.1989 The analysis and modeling of dilatational terms in compressible turbulence. NASA, Langley Research Center, Hampton, Virginia NAS1-18605. · Zbl 0721.76037
[73] Sarkar, S., Erlebacher, G., Hussaini, M.Y. & Kreiss, H.O.1991The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech.227, 473-493. · Zbl 0721.76037
[74] Scheffel, J.2001 On analytical solution of the Navier-Stokes equations. Royal Institute of Technology, Stockholm, Sweden TRITA-ALE-2001-01.
[75] Schmidt, H. & Schumann, U.1989Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech.200, 511-562. · Zbl 0659.76065
[76] Selle, L., Okong’o, N., Bellan, J. & Harstad, K.2007Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study. J. Fluid Mech.593, 57-91. · Zbl 1151.76508
[77] Smagorinsky, J.1963General circulation experiments with the primitive equations: I. The basic equations. Mon. Weath. Rev.91, 99.
[78] Smits, A.J. & Dussauge, J.P.2006Turbulent Shear Layers in Supersonic Flow. Springer Science.
[79] Smyth, W.D. & Moum, J.N.2000Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids12, 1343-1362. · Zbl 1149.76543
[80] Speziale, C.G.1985Galiean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J. Fluid Mech.156, 55-62. · Zbl 0586.76099
[81] Speziale, C.G., Sarkar, S. & Gatski, T.B.1991Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech.227, 245-272. · Zbl 0728.76052
[82] Thompson, K.W.1987Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys.68, 1-24. · Zbl 0619.76089
[83] Vreman, B., Geurts, B. & Kuerten, H.1995aA priori tests of large eddy simulation of the compressible plane mixing layer. J. Engng Maths29, 299-327. · Zbl 0848.76070
[84] Vreman, B., Geurts, B.J. & Kuerten, H.1995bSubgrid-modeling in LES of compressible flow. Appl. Sci. Res.54, 191-203. · Zbl 0844.76039
[85] Vreman, B., Geurts, B. & Kuerten, H.1997Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech.339, 357-390. · Zbl 0900.76369
[86] Vreman, A.W., Sandham, N.D. & Luo, K.H.1996Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech.320, 235-258. · Zbl 0875.76159
[87] Wilcox, D.C.1992Dilatation-dissipation corrections for advanced turbulence models. AIAA J.30, 2639-2646. · Zbl 0762.76043
[88] Wilcox, D.C.2006Turbulence Modeling for CFD, 3rd edn. DCW Industries.
[89] Wright, S.1921Correlation and causation. J. Agric. Res.20, 557-585.
[90] Xu, X.2003 Large eddy simulation of compressible turbulent pipe flow with heat transfer. PhD Thesis, Iowa State University, Iowa.
[91] Yoder, D.A.2003 Initial evaluation of an algebraic Reynolds stress model for compressible turbulent shear flows. AIAA Paper 2003-548.
[92] Zang, T.A., Dahlburg, R.B. & Dahlburg, J.P.1992Direct and large-eddy simulations of three-dimensional compressible Navier-Stokes turbulence. Phys. Fluids A4, 127-140. · Zbl 0742.76060
[93] Zeman, O.1990Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys. Fluids A2, 178-188.
[94] Zhang, Y.S., Bi, W.T., Hussain, F. & She, Z.S.2014A generalized Reynolds analogy for compressible wall-bounded turbulent fows. J. Fluid Mech.739, 392-420.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.