×

Collapse of transitional wall turbulence captured using a rare events algorithm. (English) Zbl 1507.76070

Summary: This text presents one of the first successful applications of a rare events sampling method for the study of multistability in a turbulent flow without stochastic energy injection. The trajectories of collapse of turbulence in plane Couette flow, and their probability and rate of occurrence are systematically computed using adaptive multilevel splitting (AMS). The AMS computations are performed in a system of size \(L_x\times L_z=24\times 18\) at Reynolds number \(R=370\) with an acceleration by a factor \(O(10)\) with respect to direct numerical simulations (DNS) and in a system of size \(L_x\times L_z=36\times 27\) at Reynolds number \(R=377\) with an acceleration by a factor \(O(10^3)\). The AMS results are validated by a comparison with DNS in the smaller system. Visualisations indicate that turbulence collapses because the self-sustaining process of turbulence fails locally. The streamwise vortices decay first in streamwise elongated holes, leaving streamwise invariant streamwise velocity tubes that experience viscous decay. These holes then extend in the spanwise direction. The examination of more than a thousand trajectories in the (\(E_{k,x}=\int u_x^2/2\,\mathrm{d}^3\boldsymbol{x}\), \(E_{k,y-z}=\int (u_y^2/2+u_z^2/2)\,\mathrm{d}^3\boldsymbol{x}\)) plane in the smaller system confirms the faster decay of streamwise vortices and shows concentration of trajectories. This hints at an instanton phenomenology in the large size limit. The computation of turning point states, beyond which laminarisation is certain, confirms the hole formation scenario and shows that it is more pronounced in larger systems. Finally, the examination of non-reactive trajectories indicates that both the vortices and the streaks reform concomitantly when the laminar holes close.

MSC:

76F06 Transition to turbulence
76E05 Parallel shear flows in hydrodynamic stability
76M35 Stochastic analysis applied to problems in fluid mechanics

References:

[1] Baars, S., Castellana, D., Wubs, F.W. & Dijkstra, H.A.2021Application of adaptive multilevel splitting to high-dimensional dynamical systems. J. Comput. Phys.424, 109876. · Zbl 07508476
[2] Berhanu, M., et al.2007Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett.77 (5), 59001.
[3] Bottin, S. & Chaté, H.1998Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B6 (1), 143-155.
[4] Bouchet, F. & Reygner, J.2016Generalisation of the Eyring-Kramers transition rate formula to irreversible diffusion processes. Ann. Henri Poincaré17, 3499-3532. Springer. · Zbl 1375.82081
[5] Bouchet, F., Rolland, J. & Simonnet, E.2019aRare event algorithm links transitions in turbulent flows with activated nucleations. Phys. Rev. Lett.122 (7), 074502.
[6] Bouchet, F., Rolland, J. & Wouters, J.2019bRare event sampling methods. Chaos29 (8), 2.
[7] Bréhier, C.-E., Gazeau, M., Goudenège, L., Lelièvre, T. & Rousset, M.2016Unbiasedness of some generalized adaptive multilevel splitting algorithms. Ann. Appl. Probab.26 (6), 3559-3601. · Zbl 1361.65006
[8] Cérou, F., Delyon, B., Guyader, A. & Rousset, M.2019aOn the asymptotic normality of adaptive multilevel splitting. SIAM/ASA J. Uncertain. Quantif.7 (1), 1-30. · Zbl 1412.82029
[9] Cérou, F. & Guyader, A.2007Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl.25 (2), 417-443. · Zbl 1220.65009
[10] Cérou, F., Guyader, A., Lelievre, T. & Malrieu, F.2013On the length of one-dimensional reactive paths. Lat. Am. J. Probab. Math. Stat.10 (1), 359-389. · Zbl 1288.60047
[11] Cérou, F., Guyader, A., Lelievre, T. & Pommier, D.2011A multiple replica approach to simulate reactive trajectories. J. Chem. Phys.134 (5), 054108.
[12] Cérou, F., Guyader, A. & Rousset, M.2019bAdaptive multilevel splitting: historical perspective and recent results. Chaos29 (4), 043108. · Zbl 1417.65024
[13] Chantry, M., Tuckerman, L.S. & Barkley, D.2017Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech.824, R1. · Zbl 1374.76085
[14] De Lozar, A., Mellibovsky, F., Avila, M. & Hof, B.2012Edge state in pipe flow experiments. Phys. Rev. Lett.108 (21), 214502.
[15] De Souza, D., Bergier, T. & Monchaux, R.2020Transient states in plane Couette flow. J. Fluid Mech.903, A33. · Zbl 1460.76380
[16] Devetsikiotis, M. & Townsend, J.K.1993Statistical optimization of dynamic importance sampling parameters for efficient simulation of communication networks. IEEE ACM Trans. Netw.1 (3), 293-305. · Zbl 0800.94051
[17] Duguet, Y., Le Maitre, O. & Schlatter, P.2011Stochastic and deterministic motion of a laminar-turbulent front in a spanwisely extended Couette flow. Phys. Rev. E84 (6), 066315.
[18] Ebener, L., Margazoglou, G., Friedrich, J., Biferale, L. & Grauer, R.2019Instanton based importance sampling for rare events in stochastic PDES. Chaos29 (6), 063102. · Zbl 1476.60005
[19] Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T.M.2008Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. A366 (1868), 1297-1315.
[20] Eckhardt, B., Schneider, T.M., Hof, B. & Westerweel, J.2007Turbulence transition in pipe flow. Annu. Rev. Fluid Mech.39, 447-468. · Zbl 1296.76062
[21] Faisst, H. & Eckhardt, B.2003 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. arXiv:physics/0312078.
[22] Gibson, J.F., Halcrow, J. & Cvitanović, P.2008Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.611, 107-130. · Zbl 1151.76453
[23] Glasserman, P., Heidelberger, P., Shahabuddin, P. & Zajic, T.1998A large deviations perspective on the efficiency of multilevel splitting. IEEE Trans. Autom. Control43 (12), 1666-1679. · Zbl 0957.68005
[24] Gomé, S., Tuckerman, L.S. & Barkley, D.2020Statistical transition to turbulence in plane channel flow. Phys. Rev. Fluids5, 083905.
[25] Grafke, T. & Vanden-Eijnden, E.2019Numerical computation of rare events via large deviation theory. Chaos29 (6), 063118. · Zbl 1416.65042
[26] Grandemange, M., Gohlke, M. & Cadot, O.2013Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech.722, 51-84. · Zbl 1287.76011
[27] Hamilton, J.M., Kim, J. & Waleffe, F.1995Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech.287 (1), 317-348. · Zbl 0867.76032
[28] Hänggi, P., Talkner, P. & Borkovec, M.1990Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys.62 (2), 251.
[29] Hartmann, C., Kebiri, O., Neureither, L. & Richter, L.2019Variational approach to rare event simulation using least-squares regression. Chaos29 (6), 063107. · Zbl 1421.62009
[30] Herbert, C., Caballero, R. & Bouchet, F.2020Atmospheric bistability and abrupt transitions to superrotation: wave-jet resonance and Hadley cell feedbacks. J. Atmos. Sci.77 (1), 31-49.
[31] Jiménez, J. & Moin, P.1991The minimal flow unit in near-wall turbulence. J. Fluid Mech.225, 213-240. · Zbl 0721.76040
[32] Kawahara, G., Jiménez, J., Uhlmann, M. & Pinelli, A.2003Linear instability of a corrugated vortex sheet-a model for streak instability. J. Fluid Mech.483, 315-342. · Zbl 1055.76022
[33] Kim, H.-J. & Durbin, P.A.1988Investigation of the flow between a pair of circular cylinders in the flopping regime. J. Fluid Mech.196, 431-448.
[34] L’Ecuyer, P., Mandjes, M. & Tuffin, B.2009Importance Sampling in Rare Event Simulation. Wiley Online Library.
[35] Lestang, T., Bouchet, F. & Lévêque, E.2020Numerical study of extreme mechanical force exerted by a turbulent flow on a bluff body by direct and rare-event sampling techniques. J. Fluid Mech.895, A19. · Zbl 1460.76548
[36] Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C. & Bouchet, F.2018Computing return times or return periods with rare event algorithms. J. Stat. Mech.2018 (4), 043213. · Zbl 1459.82367
[37] Liu, T., Semin, B., Klotz, L., Godoy-Diana, R., Wesfreid, J.E. & Mullin, T.2020Anisotropic decay of turbulence in plane Couette-Poiseuille flow. J. Fluid Mechanics915, A65.
[38] Lopes, L.J.S. & Lelièvre, T.2019Analysis of the adaptive multilevel splitting method on the isomerization of alanine dipeptide. J. Comput. Chem.40 (11), 1198-1208.
[39] Manneville, P.2011On the decay of turbulence in plane Couette flow. Fluid Dyn. Res.43 (6), 065501. · Zbl 1421.76108
[40] Marquillie, M., Ehrenstein, U. & Laval, J.-P.2011Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech.681, 205-240. · Zbl 1241.76178
[41] Metzner, P., Schütte, C. & Vanden-Eijnden, E.2006Illustration of transition path theory on a collection of simple examples. J. Chem. Phys.125 (8), 084110. · Zbl 1185.60086
[42] Moxey, D. & Barkley, D.2010Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA107 (18), 8091-8096.
[43] Onsager, L.1938Initial recombination of ions. Phys. Rev.54 (8), 554.
[44] Podvin, B. & Sergent, A.2017Precursor for wind reversal in a square Rayleigh-Bénard cell. Phys. Rev. E95 (1), 013112.
[45] Pope, S.B.2001Turbulent Flows. IOP Publishing.
[46] Ragone, F. & Bouchet, F.2019Computation of extreme values of time averaged observables in climate models with large deviation techniques. J. Stat. Phys.179, 1637-1665. · Zbl 1443.86020
[47] Ragone, F. & Bouchet, F.2021Rare event algorithm study of extreme warm summers and heat waves over Europe. Geophys. Res. Lett.48 (12), e2020GL091197.
[48] Rolland, J.2015Mechanical and statistical study of the laminar hole formation in transitional plane Couette flow. Eur. Phys. J. B88 (3), 66.
[49] Rolland, J.2018Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows. Phys. Rev. E97 (2), 023109.
[50] Rolland, J., Bouchet, F. & Simonnet, E.2016Computing transition rates for the 1-d stochastic Ginzburg-Landau-Allen-Cahn equation for finite-amplitude noise with a rare event algorithm. J. Stat. Phys.162 (2), 277-311. · Zbl 1334.35330
[51] Rolland, J. & Simonnet, E.2015Statistical behaviour of adaptive multilevel splitting algorithms in simple models. J. Comput. Phys.283, 541-558. · Zbl 1352.65028
[52] Romanov, V.A.1973Stability of plane-parallel Couette flow. Funct. Anal. Applics.7 (2), 137-146. · Zbl 0287.76037
[53] Schmiegel, A. & Eckhardt, B.1997Fractal stability border in plane Couette flow. Phys. Rev. Lett.79 (26), 5250.
[54] Schneider, T.M., Eckhardt, B. & Yorke, J.A.2007Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett.99 (3), 034502.
[55] Shi, L., Avila, M. & Hof, B.2013Scale invariance at the onset of turbulence in Couette flow. Phys. Rev. Lett.110 (20), 204502.
[56] Simonnet, E.2016Combinatorial analysis of the adaptive last particle method. Stat. Comput.26 (1-2), 211-230. · Zbl 1342.65014
[57] Simonnet, E., Rolland, J. & Bouchet, F.2021Multistability and rare spontaneous transitions between climate and jet configurations in a barotropic model of the Jovian mid-latitude troposphere. J. Atmos. Sci.78, 1889-1911.
[58] Touchette, H.2009The large deviation approach to statistical mechanics. Phys. Rep.478 (1-3), 1-69.
[59] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9 (4), 883-900.
[60] Wan, X. & Yu, H.2017A dynamic-solver-consistent minimum action method: with an application to 2D Navier-Stokes equations. J. Comput. Phys.331, 209-226. · Zbl 1380.65289
[61] Willis, A.P. & Kerswell, R.R.2009Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’s states. J. Fluid Mech.619, 213-233. · Zbl 1156.76395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.