×

Generalisation of the Eyring-Kramers transition rate formula to irreversible diffusion processes. (English) Zbl 1375.82081

The authors are dealing with the equilibrium systems which can be described by the overdamped diffusion of a particle in \(\mathbb R^d\) driven by the standard (Itô’s) stochastic differential equation. In such problems it is of interest to define the time scale at which transitions between different metastable states may occur. The Eyring-Kramers formula provides an answer for the Itô’s equation. Here the authors generalize this Eyring-Hramers formula for a more general class of stochastic differential equations referred to as Freidlin-Wentzell equation.

MSC:

82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
60J60 Diffusion processes
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60J65 Brownian motion

References:

[1] Ariel G., Vanden-Eijnden E.: Testing transition state theory on Kac-Zwanzig model. J. Stat. Phys. 126(1), 43-73 (2007) · Zbl 1119.82033 · doi:10.1007/s10955-006-9165-0
[2] Arrhenius S.: On the reaction velocity of the inversion of cane sugar by acids. J. Phys. Chem. 4, 226 (1889)
[3] Baek Y., Kafri Y.: Singularities in large deviation functions. J. Stat. Mec. P08026, 1-31 (2015) · Zbl 1456.82643
[4] Barret F.: Sharp asymptotics of metastable transition times for one dimensional SPDEs. Ann. Inst. Henri Poincaré Probab. Stat. 51(1), 129-166 (2015) · Zbl 1319.82019 · doi:10.1214/13-AIHP575
[5] Barret F., Bovier A., Méléard S.: Uniform estimates for metastable transition times in a coupled bistable system. Electron. J. Probab. 15(12), 323-345 (2010) · Zbl 1191.82040 · doi:10.1214/EJP.v15-751
[6] Berglund, N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Relat Fields 19(3), 459-490 (2013) · Zbl 1321.58035
[7] Berglund, N.: Noise-induced phase slips, log-periodic oscillations, and the Gumbel distribution. Preprint available at arXiv:1403.7393 · Zbl 1356.60089
[8] Berglund, N., Dutercq, S.: The Eyring-Kramers law for Markovian jump processes with symmetries. J. Theor. Probab. published online, (2015) · Zbl 1365.60074
[9] Berglund N., Gentz B.: On the noise-induced passage through an unstable periodic orbit. I. Two-level model. J. Stat. Phys. 114(5-6), 1577-1618 (2004) · Zbl 1072.82018 · doi:10.1023/B:JOSS.0000013966.54504.da
[10] Berglund N., Gentz B.: The Eyring-Kramers law for potentials with nonquadratic saddles. Markov Process. Relat. Fields 16(3), 549-598 (2010) · Zbl 1234.60076
[11] Berglund N., Gentz B.: Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond. Electron. J. Probab. 18(24), 1-58 (2013) · Zbl 1285.60060
[12] Berglund N., Gentz B.: On the noise-induced passage through an unstable periodic orbit II: General case. SIAM J. Math. Anal. 46(1), 310-352 (2014) · Zbl 1291.60114 · doi:10.1137/120887965
[13] Berglund, N., di Gesú, G., Weber, H.: An Eyring-Kramers law for the stochastic Allen-Cahn equation in dimension two. Preprint available at arXiv:1604.05742 · Zbl 1362.60059
[14] Bouchet, F., Nardini, C., Gawedzki, K.: Perturbative calculation of quasi-potential in non-equilibrium diffusions: a mean-field example. J. Stat. Phys. (2016). arXiv:1509.03273 (in press) · Zbl 1341.82056
[15] Bouchet, F., Touchette, H.: Non-classical large deviations for a noisy system with non-isolated attractors. J. Stat. Mech. P05028(05), 1-23 (2012) · Zbl 1456.82546
[16] Bovier A., Eckhoff M., Gayrard V., Klein M.: Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6(4), 399-424 (2004) · Zbl 1076.82045 · doi:10.4171/JEMS/14
[17] Cohen J.K., Lewis R.M.: A ray method for the asymptotic solution of the diffusion equation.. IMA J. Appl. Math. 3(3), 266-290 (1967) · Zbl 0149.31104 · doi:10.1093/imamat/3.3.266
[18] Day M.V., Darden T.A.: Some regularity results on the Ventcel-Freidlin quasi-potential function. Appl. Math. Optim. 13, 259-282 (1985) · Zbl 0581.60044 · doi:10.1007/BF01442211
[19] Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Vol. 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010). (Corrected reprint of the second edition (1998)) · Zbl 0896.60013
[20] Dykman M.I., Millonas M.M., Smelyanskiy V.N.: Observable and hidden singular features of large fluctuations in nonequilibrium systems. Phys. Lett. A 195(1), 53-58 (1994) · Zbl 0941.82526 · doi:10.1016/0375-9601(94)90426-X
[21] Dykman M.I., Smelyanskiy V.N., Maier R.S., Silverstein M.: Singular features of large fluctuations in oscillating chemical systems. J. Phys. Chem. 100(49), 19197-19209 (1996) · doi:10.1021/jp962746i
[22] Eyring H.: The activated complex in chemical reactions. J. Chem. Phys. 3(2), 107-115 (1935) · doi:10.1063/1.1749604
[23] Freidlin M.I., WentzellA.D.: Random perturbations of dynamical systems, vol. 260. Springer Science & Business Media, Berlin (2012) · Zbl 1267.60004 · doi:10.1007/978-3-642-25847-3
[24] Gardiner, C.W.: Handbook of stochastic methods. Vol. 13 of Springer Series in Synergetics, second edn. Springer, Berlin (1985). (For physics, chemistry and the natural sciences) · Zbl 1076.82045
[25] Gaudillière A., Landim C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields 158(1-2), 55-89 (2014) · Zbl 1295.60087 · doi:10.1007/s00440-012-0477-5
[26] di Gesù, G., and Le Peutrec, D.: Small noise spectral gap asymptotics for a large system of nonlinear diffusions. Preprint available at arXiv:1506.04434 · Zbl 1395.60095
[27] Graham, R.: Macroscopic potentials, bifurcations and noise in dissipative systems. In: Noise in Nonlinear Dynamical Systems, vol. 1, pp. 225-278. Cambridge University Press (1988) · Zbl 1285.60060
[28] Graham R., Haken H.: Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium. Zeit. Phys. 243(3), 289-302 (1971) · doi:10.1007/BF01394858
[29] Graham R., Tél T.: On the weak-noise limit of Fokker-Planck models. J. Stat. Phys. 35(5), 729-748 (1984) · Zbl 0591.60081 · doi:10.1007/BF01010830
[30] Graham R., Tél T.: Weak-noise limit of Fokker-Planck models and nondifferentiable potentials for dissipative dynamical systems. Phys. Rev. A 31(2), 1109 (1985) · doi:10.1103/PhysRevA.31.1109
[31] Helffer B., Klein M., Nier F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Math. Contemp. 26, 41-86 (2004) · Zbl 1079.58025
[32] Hwang C.-R., Hwang-Ma S.-Y., Sheu S.-J.: Accelerating Gaussian diffusions. Ann. Appl. Probab. 3(3), 897-913 (1993) · Zbl 0780.60074 · doi:10.1214/aoap/1177005371
[33] Hwang C.-R., Hwang-Ma S.-Y., Sheu S.-J.: Accelerating diffusions. Ann. Appl. Probab. 15(2), 1433-1444 (2005) · Zbl 1069.60065 · doi:10.1214/105051605000000025
[34] Khasminskii R.: Stochastic stability of differential equations, vol. 66. Springer Science & Business Media, Berlin (2011) · Zbl 1259.60058
[35] Kramers H.-A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284-304 (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[36] Landauer R., Swanson J.A.: Frequency factors in the thermally activated process. Phys. Rev. 121, 1668 (1961) · doi:10.1103/PhysRev.121.1668
[37] Landim C.: Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. Commun. Math. Phys. 330(1), 1-32 (2014) · Zbl 1305.82045 · doi:10.1007/s00220-014-2072-3
[38] Landim, C., Seo, I.: Metastability of non-reversible random walks in a potential field, the Eyring-Kramers transition rate formula. Preprint available at arXiv:1605.01009 · Zbl 1386.60266
[39] Langer J.S.: Statistical theory of the decay of metastable states. Ann. Phys. 54(2), 258-275 (1969) · doi:10.1016/0003-4916(69)90153-5
[40] Lelièvre T., Nier F., Pavliotis G.A.: Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Stat. Phys. 152(2), 237-274 (2013) · Zbl 1276.82042 · doi:10.1007/s10955-013-0769-x
[41] Lelièvre T., Rousset M., Stoltz G.: Free energy computations. A mathematical perspective. Imperial College Press, London (2010) · Zbl 1227.82002 · doi:10.1142/p579
[42] Ludwig D.: Persistence of dynamical systems under random perturbations. SIAM Rev. 17(4), 605-640 (1975) · Zbl 0312.60040 · doi:10.1137/1017070
[43] Maier R.S., Stein D.L.: Escape problem for irreversible systems. Phys. Rev. E 48(2), 931 (1993) · doi:10.1103/PhysRevE.48.931
[44] Maier R.S., Stein D.L.: Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57(3), 752-790 (1997) · Zbl 0874.60072 · doi:10.1137/S0036139994271753
[45] Matkowsky B.J., Schuss Z.: The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33(2), 365-382 (1977) · Zbl 0369.60071 · doi:10.1137/0133024
[46] Menz G., Schlichting A.: Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 42(5), 1809-1884 (2014) · Zbl 1327.60156 · doi:10.1214/14-AOP908
[47] Schuss Z.: Theory and applications of stochastic processes: An analytical approach, vol. 170. Springer Science & Business Media, Berlin (2009) · Zbl 1202.60005
[48] Schuss Z., Matkowsky B.J.: The exit problem: a new approach to diffusion across potential barriers. SIAM J. Appl. Math. 36(3), 604-623 (1979) · Zbl 0406.60071 · doi:10.1137/0136043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.