×

Multirate linearly-implicit GARK schemes. (English) Zbl 1507.65122

The efficient solution of initial value problems relies on the use of variable stepsize methods, which adapt to the dynamics of the problem. Multirate schemes exploit this different dynamical behavior by applying small step sizes to the fast part and large step sizes to the slow part.
On the other hand, linearly implicit methods enjoy the same stability properties as the implicit schemes, but solve only linear systems of equations at each step. This results in an improvement in efficiency.
The paper presents a new MR-GARK ROS/ROW formalism for these kind of methods (GARK-ROS schemes use the exact Jacobian information while GARK-ROW schemes allow any approximation of the Jacobian). Using the partitioned GARK ROS/ROW framework, general order conditions are derived. A linear stability analysis is also performed to validate the applicability of the proposed schemes. Various slow-fast coupling strategies for an efficient computation are presented. Some multirate infinitesimal step (MRI-GARK ROS/ROW) schemes are developed and multirate infinitesimal step SPC methods.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

Software:

RODAS; FATODE

References:

[1] Andrus, JF, Numerical solution for ordinary differential equations separated into subsystems, SIAM J. Numer. Anal., 16, 605-611 (1979) · Zbl 0421.65044 · doi:10.1137/0716045
[2] Andrus, JF, Stability of a multirate method for numerical integration of ODEs, Comput. Math. Appl., 25, 3-14 (1993) · Zbl 0771.65037 · doi:10.1016/0898-1221(93)90218-K
[3] Bartel, A.; Günther, M., A multirate W-method for electrical networks in state-space formulation, J. Comput. Appl. Math., 147, 411-425 (2002) · Zbl 1013.65072 · doi:10.1016/S0377-0427(02)00476-4
[4] Bremicker-Trübelhorn, S.; Ortleb, S., On multirate GARK schemes with adaptive micro-step sizes for fluid-structure interaction: order conditions and preservation of the geometric conservation law, Aerospace, 4, 8 (2017) · doi:10.3390/aerospace4010008
[5] Kennedy, CA; Carpenter, MH, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103 · doi:10.1016/S0168-9274(02)00138-1
[6] Cardone, A.; Jackiewicz, Z.; Sandu, A.; Zhang, H., Extrapolated IMEX Runge-Kutta methods, Math. Model. Anal., 19, 18-43 (2014) · Zbl 1488.65174 · doi:10.3846/13926292.2014.892903
[7] Cardone, A.; Jackiewicz, Z.; Sandu, A.; Zhang, H., Extrapolation-based implicit-explicit general linear methods, Numer. Algorithms, 65, 377-399 (2014) · Zbl 1291.65217 · doi:10.1007/s11075-013-9759-y
[8] Constantinescu, EM; Sandu, A., Multirate timestepping methods for hyperbolic conservation laws, J. Sci. Comput., 33, 239-278 (2007) · Zbl 1127.76033 · doi:10.1007/s10915-007-9151-y
[9] Constantinescu, E.M., Sandu, A.: On extrapolated multirate methods. In: Progress in Industrial Mathematics at ECMI 2008, Hans-Georg, B., Frank, H., Avner, F., Arvind, G., Helmut, N., William, R.P., Torgeir, R., Fadil, S., Anna-Karin, T., Vincenzo, C., Robert, M., Helmut, N., Otmar, S., Alistair, D.F., John N., Hilary, O., and Eddie, W. (eds.) vol. 15 of Mathematics in Industry, Springer Berlin Heidelberg, pp. 341-347 (2010) · Zbl 1220.65087
[10] Constantinescu, EM; Sandu, A., Extrapolated multirate methods for differential equations with multiple time scales, J. Sci. Comput., 56, 28-44 (2013) · Zbl 1269.65069 · doi:10.1007/s10915-012-9662-z
[11] Engstler, C.; Lubich, C., Multirate extrapolation methods for differential equations with different time scales, Computing, 58, 173-185 (1997) · Zbl 0891.65083 · doi:10.1007/BF02684438
[12] Gear, CW; Wells, DR, Multirate linear multistep methods, BIT, 24, 484-502 (1984) · Zbl 0555.65046 · doi:10.1007/BF01934907
[13] Günther, M.; Kværnø, A.; Rentrop, P., Multirate partitioned Runge-Kutta methods, BIT Numer. Math., 41, 504-514 (2001) · Zbl 0990.65081 · doi:10.1023/A:1021967112503
[14] Günther, M.; Rentrop, P., Multirate ROW-methods and latency of electric circuits, Appl. Numer. Math., 13, 83-102 (1993) · Zbl 0787.65045 · doi:10.1016/0168-9274(93)90133-C
[15] Günther, M.; Sandu, A., Multirate generalized additive Runge-Kutta methods, Numer. Math., 133, 497-524 (2016) · Zbl 1344.65064 · doi:10.1007/s00211-015-0756-z
[16] Hachtel, C., Bartel, A., Günther, M., Sandu, A.: Multirate implicit Euler schemes for a class of differential-algebraic equations of index-1. J. Comput. Appl. Math. 387, 112499 (2021) · Zbl 1458.65103
[17] Hairer, E., Wanner, G.: Solving ordinary differential equations II: stiff and differential-algebraic problems. In: Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin, Heidelberg (1996) · Zbl 0859.65067
[18] Kato, T.; Kataoka, T., Circuit analysis by a new multirate method, Electr. Eng. Jpn, 126, 55-62 (1999) · doi:10.1002/(SICI)1520-6416(199903)126:4<55::AID-EEJ7>3.0.CO;2-G
[19] Kennedy, CA; Carpenter, MH, Higher-order additive Runge-Kutta schemes for ordinary differential equations, Appl. Numer. Math., 136, 183-205 (2019) · Zbl 1408.65045 · doi:10.1016/j.apnum.2018.10.007
[20] Knoth, O.; Wolke, R., Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows, Appl. Numer. Math., 28, 327-341 (1998) · Zbl 0934.76058 · doi:10.1016/S0168-9274(98)00051-8
[21] Kværnø, A., Stability of multirate Runge-Kutta schemes, Int. J. Diff. Equ. Appl., 1, 97-105 (2000) · Zbl 0955.65052
[22] Kværnø, A., Rentrop, P.: Low order multirate Runge-Kutta methods in electric circuit simulation. (1999)
[23] Rang, Joachim; Angermann, L., New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1, BIT Numer. Math., 45, 761-787 (2005) · Zbl 1093.65097 · doi:10.1007/s10543-005-0035-y
[24] Rice, J.R.: Split Runge-Kutta methods for simultaneous equations. J. Res. Natl. Inst. Stand. Technol. 60, (1960) · Zbl 0091.29202
[25] Roberts, S.; Loffeld, J.; Sarshar, A.; Woodward, CS; Sandu, A., Implicit multirate gark methods, J. Sci. Comput., 87, 4 (2021) · Zbl 1471.65084 · doi:10.1007/s10915-020-01400-z
[26] Roberts, S.; Sarshar, A.; Sandu, A., Coupled multirate infinitesimal GARK methods for stiff differential equations with multiple time scales, SIAM J. Sci. Comput., 42, A1609-A1638 (2020) · Zbl 1441.65055 · doi:10.1137/19M1266952
[27] Romer, U., Narayanamurthi, M., Sandu, A.: Goal-oriented a posteriori estimation of numerical errors in the solution of multiphysics systems. Submitted (2020)
[28] Rosenbrock, HH, Some general implicit processes for the numerical solution of differential equations, Comput. J., 5, 329-330 (1963) · Zbl 0112.07805 · doi:10.1093/comjnl/5.4.329
[29] Sandu, A., A class of multirate infinitesimal GARK methods, SIAM J. Numer. Anal., 57, 2300-2327 (2019) · Zbl 1435.65109 · doi:10.1137/18M1205492
[30] Sandu, A.; Constantinescu, EM, Multirate Adams methods for hyperbolic equations, J. Sci. Comput., 38, 229-249 (2009) · Zbl 1203.65112 · doi:10.1007/s10915-008-9235-3
[31] Sandu, A., Constantinescu, E.M.: Multirate time discretizations for hyperbolic partial differential equations. In: International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2009), vol. 1168-1 of American Institute of Physics (AIP) Conference Proceedings, pp. 1411-1414 (2009) · Zbl 1182.65146
[32] Sandu, A.; Guenther, M.; Roberts, SB, Linearly implicit GARK schemes, Appl. Numer. Math., 161, 286-310 (2021) · Zbl 1475.65077 · doi:10.1016/j.apnum.2020.11.014
[33] Sandu, A.; Günther, M., A generalized-structure approach to additive Runge-Kutta methods, SIAM J. Numer. Anal., 53, 17-42 (2015) · Zbl 1327.65132 · doi:10.1137/130943224
[34] Sarshar, A.; Roberts, S.; Sandu, A., Design of high-order decoupled multirate GARK schemes, SIAM J. Sci. Comput., 41, A816-A847 (2019) · Zbl 1411.65091 · doi:10.1137/18M1182875
[35] Savcenco, V.: Construction of high-order multirate Rosenbrock methods for stiff ODEs, Tech. Report MAS-E0716, Centrum voor Wiskunde en Informatica (2007) · Zbl 1152.65385
[36] Steihaug, T.; Wolfbrandt, A., An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations, Math. Comput., 33, 521 (1979) · Zbl 0451.65055 · doi:10.1090/S0025-5718-1979-0521273-8
[37] Wensch, J.; Knoth, O.; Galant, A., Multirate infinitesimal step methods for atmospheric flow simulation, BIT Numer. Math., 49, 449-473 (2009) · Zbl 1419.76510 · doi:10.1007/s10543-009-0222-3
[38] Zanna, A.: Discrete variational methods and symplectic generalized additive Runge-Kutta methods. (2020)
[39] Zhang, H.; Sandu, A., FATODE: a library for forward, adjoint and tangent linear integration of stiff systems, SIAM J. Sci. Comput., 36, C504-C523 (2014) · Zbl 1307.65104 · doi:10.1137/130912335
[40] Zhang, H.; Sandu, A.; Blaise, S., Partitioned and implicit-explicit general linear methods for ordinary differential equations, J. Sci. Comput., 61, 119-144 (2014) · Zbl 1308.65122 · doi:10.1007/s10915-014-9819-z
[41] Zhang, H.; Sandu, A.; Blaise, S., High order implicit-explicit general linear methods with optimized stability regions, SIAM J. Sci. Comput., 38, A1430-A1453 (2016) · Zbl 1337.65008 · doi:10.1137/15M1018897
[42] Zharovsky, E.; Sandu, A.; Zhang, H., A class of IMEX two-step Runge-Kutta methods, SIAM J. Numer. Anal., 53, 321-341 (2015) · Zbl 1327.65133 · doi:10.1137/130937883
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.