×

TCB-spline-based isogeometric analysis method with high-quality parameterizations. (English) Zbl 1507.65047

Summary: Isogeometric analysis (IGA) was introduced to integrate methods for analysis and computer-aided design (CAD) into a unified process. High-quality parameterization of a physical domain plays a crucial role in IGA. However, obtaining high-quality parameterizations for complex geometries retains a challenge. Triangle configuration based bivariate simplex splines (TCB-splines) and their rational extensions provide an attractive alternative to classical nonuniform rational B-splines (NURBS) in the context of IGA, as they not only share many desired properties with NURBS but also can be defined over general polygonal domains. In this work, using TCB-splines in IGA is suggested to overcome the limits posed by the tensor-product structure of NURBS. We present the methodology for IGA to use rational TCB-splines over general polygonal domains. Then a method to generate the parametric domain according to given physical domain boundaries is proposed. This allows us to obtain a high-quality parameterization easily without resorting to the optimization method. Several numerical examples with complex physical domains demonstrate the flexibility of our TCB-spline-based IGA method, the high quality of the parameterization, and the accuracy of the numerical solutions.

MSC:

65D07 Numerical computation using splines

Software:

ISOGAT
Full Text: DOI

References:

[1] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[3] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[4] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C. L.; Hughes, T. J., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Engrg., 196, 29-30, 2943-2959 (2007) · Zbl 1121.76076
[5] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5, 229-263 (2010), Computational Geometry and Analysis · Zbl 1227.74123
[6] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275 (2010) · Zbl 1227.74125
[7] Da Veiga, L. B.; Buffa, A.; Cho, D.; Sangalli, G., IsoGeometric analysis using T-splines on two-patch geometries, Comput. Methods Appl. Mech. Engrg., 200, 21, 1787-1803 (2011) · Zbl 1228.65229
[8] Wang, P.; Xu, J.; Deng, J.; Chen, F., Adaptive isogeometric analysis using rational PHT-splines, Comput. Aided Des., 43, 11, 1438-1448 (2011)
[9] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K.-U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 47-48, 3410-3424 (2011) · Zbl 1230.74230
[10] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514 (2014) · Zbl 1296.65021
[11] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49, 3554-3567 (2011) · Zbl 1239.65013
[12] Garau, E. M.; Vázquez, R., Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines, Appl. Numer. Math., 123, 58-87 (2018) · Zbl 1377.65149
[13] Speleers, H.; Manni, C.; Pelosi, F.; Sampoli, M. L., Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg., 221, 132-148 (2012) · Zbl 1253.65026
[14] Pan, Q.; Xu, G.; Xu, G.; Zhang, Y., Isogeometric analysis based on extended loop’s subdivision, J. Comput. Phys., 299, 731-746 (2015) · Zbl 1352.65532
[15] Wei, X.; Li, X.; Zhang, Y. J.; Hughes, T. J., Tuned hybrid nonuniform subdivision surfaces with optimal convergence rates, Internat. J. Numer. Methods Engrg., 122, 9, 2117-2144 (2021) · Zbl 07863746
[16] Wei, X.; Zhang, Y. J.; Hughes, T. J.; Scott, M. A., Extended truncated hierarchical Catmull-Clark subdivision, Comput. Methods Appl. Mech. Engrg., 299, 316-336 (2016) · Zbl 1425.65037
[17] Cohen, E.; Martin, T.; Kirby, R.; Lyche, T.; Riesenfeld, R., Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5, 334-356 (2010) · Zbl 1227.74109
[18] Pilgerstorfer, E.; Jüttler, B., Bounding the influence of domain parameterization and knot spacing on numerical stability in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 268, 589-613 (2014) · Zbl 1295.65116
[19] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23, 2021-2031 (2011) · Zbl 1228.65232
[20] Gravesen, J.; Evgrafov, A.; Nguyen, D.-M.; Nørtoft, P., Planar parametrization in isogeometric analysis, (International Conference on Mathematical Methods for Curves and Surfaces (2012), Springer), 189-212 · Zbl 1356.65157
[21] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys., 252, 275-289 (2013) · Zbl 1349.65079
[22] Nian, X.; Chen, F., Planar domain parameterization for isogeometric analysis based on teichmüller mapping, Comput. Methods Appl. Mech. Engrg., 311, 41-55 (2016) · Zbl 1439.65189
[23] Falini, A.; Špeh, J.; Jüttler, B., Planar domain parameterization with THB-splines, Comput. Aided Geom. Design, 35, 95-108 (2015) · Zbl 1417.65066
[24] Brovka, M.; López, J.; Escobar, J. M.; Cascón, J. M.; Montenegro, R., A new method for T-spline parameterization of complex 2D geometries, Eng. Comput., 30, 4, 457-473 (2014)
[25] López, J.; Brovka, M.; Escobar, J.; Montenegro, R.; Socorro, G., Spline parameterization method for 2D and 3D geometries based on T-mesh optimization, Comput. Methods Appl. Mech. Engrg., 322, 460-482 (2017) · Zbl 1439.65015
[26] Buchegger, F.; Jüttler, B., Planar multi-patch domain parameterization via patch adjacency graphs, Comput. Aided Des., 82, 2-12 (2017)
[27] Xu, J.; Chen, F.; Deng, J., Two-dimensional domain decomposition based on skeleton computation for parameterization and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 541-555 (2015) · Zbl 1425.65189
[28] Xiao, S.; Kang, H.; Fu, X.-M.; Chen, F., Computing IGA-suitable planar parameterizations by PolySquare-enhanced domain partition, Comput. Aided Geom. Design, 62, 29-43 (2018) · Zbl 1505.65104
[29] Xu, G.; Li, M.; Mourrain, B.; Rabczuk, T.; Xu, J.; Bordas, S. P., Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization, Comput. Methods Appl. Mech. Engrg., 328, 175-200 (2018) · Zbl 1439.65200
[30] Zhang, Y. J., Geometric Modeling and Mesh Generation from Scanned Images (2018), CRC Press
[31] Zhang, Y.; Wang, W.; Hughes, T. J., Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249, 185-197 (2012) · Zbl 1348.65057
[32] Wang, W.; Zhang, Y.; Liu, L.; Hughes, T. J., Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology, Comput. Aided Des., 45, 2, 351-360 (2013)
[33] Liu, L.; Zhang, Y.; Hughes, T. J.; Scott, M. A.; Sederberg, T. W., Volumetric T-spline construction using boolean operations, Eng. Comput., 30, 4, 425-439 (2014)
[34] Liu, L.; Zhang, Y.; Liu, Y.; Wang, W., Feature-preserving T-mesh construction using skeleton-based polycubes, Comput. Aided Des., 58, 162-172 (2015)
[35] Xia, S.; Wang, X.; Qian, X., Continuity and convergence in rational triangular Bézier spline based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 297, 292-324 (2015) · Zbl 1425.65188
[36] Speleers, H.; Manni, C., Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines, J. Comput. Appl. Math., 289, 68-86 (2015) · Zbl 1317.65055
[37] Speleers, H., Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations, Constr. Approx., 37, 1, 41-72 (2013) · Zbl 1264.41014
[38] de Boor, C., Splines as linear combinations of B-splines, (Lorentz, G. G.; Chui, C. K.; Schumaker, L. L., Approximation Theory II (1976), Academic Press: Academic Press New York), 1-47 · Zbl 0343.41011
[39] Cao, J.; Chen, Z.; Wei, X.; Zhang, Y. J., A finite element framework based on bivariate simplex splines on triangle configurations, Comput. Methods Appl. Mech. Engrg., 357, Article 112598 pp. (2019) · Zbl 1442.65007
[40] Farin, G.; Hansford, D., Discrete coons patches, Comput. Aided Geom. Design, 16, 7, 691-700 (1999) · Zbl 0997.65033
[41] Wang, X.; Qian, X., An optimization approach for constructing trivariate B-spline solids, Comput. Aided Des., 46, 179-191 (2014)
[42] Nguyen, T.; Jüttler, B., Parameterization of contractible domains using sequences of harmonic maps, (International Conference on Curves and Surfaces (2010), Springer), 501-514 · Zbl 1352.65073
[43] Pan, M.; Chen, F.; Tong, W., Low-rank parameterization of planar domains for isogeometric analysis, Comput. Aided Geom. Design, 63, 1-16 (2018) · Zbl 1441.65016
[44] Pan, M.; Chen, F., Low-rank parameterization of volumetric domains for isogeometric analysis, Comput. Aided Des., 114, 82-90 (2019)
[45] Zheng, Y.; Pan, M.; Chen, F., Boundary correspondence of planar domains for isogeometric analysis based on optimal mass transport, Comput. Aided Des., 114, 28-36 (2019)
[46] Liu, H.; Yang, Y.; Liu, Y.; Fu, X.-M., Simultaneous interior and boundary optimization of volumetric domain parameterizations for IGA, Comput. Aided Geom. Design, 79, Article 101853 pp. (2020) · Zbl 1505.65077
[47] Yuan, G.-J.; Liu, H.; Su, J.-P.; Fu, X.-M., Computing planar and volumetric B-spline parameterizations for IGA by robust mapping fitting, Comput. Aided Geom. Design, 86, Article 101968 pp. (2021) · Zbl 1470.65019
[48] Marussig, B.; Hughes, T. J., A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng., 25, 4, 1059-1127 (2018)
[49] Chen, L.; Xu, G.; Wang, S.; Shi, Z.; Huang, J., Constructing volumetric parameterization based on directed graph simplification of \(l_1\) polycube structure from complex shapes, Comput. Methods Appl. Mech. Engrg., 351, 422-440 (2019) · Zbl 1441.65115
[50] Dahmen, W.; Micchelli, C. A., (Recent Progress in Multivariate Splines. Recent Progress in Multivariate Splines, Approximation Theory IV (1983)), 27-121 · Zbl 0559.41011
[51] Dahmen, W.; Micchelli, C. A.; Seidel, H.-P., Blossoming begets B-spline bases built better by B-patches, Math. Comp., 59, 199, 97-115 (1992) · Zbl 0757.41014
[52] de Boor, C., Multivariate piecewise polynomials, Acta Numer., 2, 65-109 (1993) · Zbl 0796.41009
[53] Franssen, M., Evaluation of DMS-Splines (1995), Eindhoven University of Technology
[54] Neamtu, M., What is the natural generalization of univariate splines to higher dimensions?, (Mathematical Methods for Curves and Surfaces (2001), Vanderbilt University: Vanderbilt University USA), 355-392 · Zbl 0988.41004
[55] Y. Liu, J. Snoeyink, Quadratic and cubic B-splines by generalizing higher-order Voronoi diagrams, in: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, 2007, pp. 150-157. · Zbl 1221.65067
[56] Schmitt, D., Bivariate B-splines from convex configurations, J. Comput. System Sci., 120, 42-61 (2021) · Zbl 1531.65027
[57] Dembart, B.; Gonsor, D.; Neamtu, M., Bivariate quadratic B-splines used as basis functions for collocation, (Mathematics for Industry: Challenges and Frontiers 2003. A Process View: Practice and Theory (2005), SIAM), 178-198 · Zbl 1136.65015
[58] Zhang, Y.; Cao, J.; Chen, Z.; Zeng, X., Surface reconstruction using simplex splines on feature-sensitive configurations, Comput. Aided Geom. Design, 50, 14-28 (2017) · Zbl 1366.65035
[59] Liu, Y., Computations of Delaunay and Higher Order Triangulations, with Applications to Splines (2007), The University of North Carolina at Chapel Hill, (Ph.D. thesis)
[60] Du, Q.; Faber, V.; Gunzburger, M., Centroidal voronoi tessellations: applications and algorithms, SIAM Rev., 41, 4, 637-676 (1999) · Zbl 0983.65021
[61] Lloyd, S., Least squares quantization in PCM, IEEE Trans. Inform. Theory, 28, 2, 129-137 (1982) · Zbl 0504.94015
[62] Du, Q.; Emelianenko, M.; Ju, L., Convergence of the lloyd algorithm for computing centroidal voronoi tessellations, SIAM J. Numer. Anal., 44, 1, 102-119 (2006) · Zbl 1115.65017
[63] Liu, Y.; Wang, W.; Lévy, B.; Sun, F.; Yan, D.-M.; Lu, L.; Yang, C., On centroidal Voronoi Tessellation—-Energy smoothness and fast computation, ACM Trans. Graph., 28, 4 (2009)
[64] Floater, M. S., Generalized barycentric coordinates and applications., Acta Numer., 24, 5, 161-214 (2015) · Zbl 1317.65065
[65] Wachspress, E. L.; El, W., A Rational Finite Element Basis (1975), Academic Press · Zbl 0322.65001
[66] Floater, M. S., Mean value coordinates, Comput. Aided Geom. Design, 20, 1, 19-27 (2003) · Zbl 1069.65553
[67] T. Schneider, K. Hormann, M.S. Floater, Bijective Composite Mean Value Mappings, in: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, Goslar, DEU, 2013, pp. 137-146.
[68] Ji, Y.; Yu, Y.-Y.; Wang, M.-Y.; Zhu, C.-G., Constructing high-quality planar NURBS parameterization for isogeometric analysis by adjustment control points and weights, J. Comput. Appl. Math., 396, Article 113615 pp. (2021) · Zbl 1470.65022
[69] Grandine, T. A., The stable evaluation of multivariate simplex splines, Math. Comp., 50, 181, 197-205 (1988) · Zbl 0663.41014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.