×

Modelling and estimation of nonlinear quantile regression with clustered data. (English) Zbl 1507.62059

Summary: In regression applications, the presence of nonlinearity and correlation among observations offer computational challenges not only in traditional settings such as least squares regression, but also (and especially) when the objective function is nonsmooth as in the case of quantile regression. Methods are developed for the modelling and estimation of nonlinear conditional quantile functions when data are clustered within two-level nested designs. The proposed estimation algorithm is a blend of a smoothing algorithm for quantile regression and a second order Laplacian approximation for nonlinear mixed models. This optimization approach has the appealing advantage of reducing the original nonsmooth problem to an approximated \(L_2\) problem. While the estimation algorithm is iterative, the objective function to be optimized has a simple analytic form. The proposed methods are assessed through a simulation study and two applications, one in pharmacokinetics and one related to growth curve modelling in agriculture.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G08 Nonparametric regression and quantile regression
62J02 General nonlinear regression

References:

[1] Abrevaya, J.; Dahl, C. M., The effects of birth inputs on birthweight: Evidence from quantile estimation on panel data, J. Bus. Econom. Statist., 26, 4, 379-397 (2008)
[2] Alfò, M.; Salvati, N.; Ranalli, M. G., Finite mixtures of quantile and M-quantile regression models, Stat. Comput., 27, 2, 547-570 (2016) · Zbl 1505.62017
[3] Austin, P. C.; Tu, J. V.; Daly, P. A.; Alter, D. A., The use of quantile regression in health care research: A, case study examining gender differences in the timeliness of thrombolytic therapy, Stat. Med., 24, 5, 791-816 (2005)
[4] Bache, S.; Dahl, C.; Kristensen, J., Headlights on tobacco road to low birthweight outcomes, Empir. Econ., 44, 3, 1593-1633 (2013)
[5] Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P., Energetic and ecological constraints on population density of reef fishes, Proc. R. Soc. B: Biol. Sci., 283, 1823, 1-8 (2016)
[6] Bates, D. M.; Watts, D. G., Nonlinear Regression Analysis and its Applications (1988), Wiley: Wiley Hoboken, NJ · Zbl 0728.62062
[7] Beets, M. W.; Weaver, R. G.; Turner-McGrievy, G.; Moore, J. B.; Webster, C.; Brazendale, K., Are we there yet? Compliance with physical activity standards in YMCA afterschool programs, Childhood Obesity, 12, 4, 237-246 (2016)
[8] Beyerlein, A., Quantile regression—opportunities and challenges from a user’s perspective, Am. J. Epidemiol., 180, 3, 330-331 (2014)
[9] Blankenberg, S.; Salomaa, V.; Makarova, N.; Ojeda, F.; Wild, P.; Lackner, K. J., Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium, Eur. Heart J., 37, 30, 2428-2437 (2016)
[10] Canay, I. A., A simple approach to quantile regression for panel data, Econom. J., 14, 3, 368-386 (2011) · Zbl 1284.62258
[11] Chen, C., A finite smoothing algorithm for quantile regression, J. Comput. Graph. Statist., 16, 1, 136-164 (2007)
[12] Chen, X.; Koenker, R.; Xiao, Z., Copula-based nonlinear quantile autoregression, Econom. J., 12, s1, S50-S67 (2009) · Zbl 1182.62175
[13] Contreras, M.; Ryan, L. M., Fitting nonlinear and constrained generalized estimating equations with optimization software, Biometrics, 56, 4, 1268-1271 (2000) · Zbl 1060.62532
[14] Davidian, M.; Giltinan, D. M., Nonlinear Models for Repeated Measurement Data (1995), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL
[15] Davidian, M.; Giltinan, D. M., Nonlinear models for repeated measurement data: An overview and update, J. Agric. Biol. Environ. Stat., 8, 4, 387 (2003)
[16] Degerud, E.; Løland, Ø.; Uel, P. M.; Seifert, R., Vitamin D status was not associated with ‘one-year’ progression of coronary artery disease, assessed by coronary angiography in statin-treated patients, Eur. J. Preventive Cardiol., 22, 5, 594-602 (2014)
[17] Demidenko, E., Mixed Models: Theory and Applications with R (2013), John Wiley & Sons: John Wiley & Sons Hoboken, NJ · Zbl 1276.62049
[18] Ding, R.; McCarthy, M. L.; Desmond, J. S.; Lee, J. S.; Aronsky, D.; Zeger, S. L., Characterizing waiting room time, treatment time, and boarding time in the emergency department using quantile regression, Acad. Emerg. Med., 17, 8, 813-823 (2010)
[19] Duffy, L. M.; Olson, R. J.; Lennert-Cody, C. E.; Galván-Magaña F. Bocanegra-Castillo, N.; Kuhnert, P. M., Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean, Mar. Biol., 162, 3, 571-593 (2015)
[20] Farcomeni, A., Quantile regression for longitudinal data based on latent Markov subject-specific parameters, Stat. Comput., 22, 1, 141-152 (2012) · Zbl 1322.62206
[21] Fornaroli, R.; Cabrini, R.; Sartori, L.; Marazzi, F.; Vracevic, D.; Mezzanotte, V., Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model, Hydrobiologia, 742, 1, 153-167 (2015)
[22] Fu, L.; Wang, Y. G., Quantile regression for longitudinal data with a working correlation model, Comput. Statist. Data Anal., 56, 8, 2526-2538 (2012) · Zbl 1252.62046
[23] Galvao, A. F., Quantile regression for dynamic panel data with fixed effects, J. Econometrics, 164, 1, 142-157 (2011) · Zbl 1441.62695
[24] Galvao, A. F.; Montes-Rojas, G. V., Penalized quantile regression for dynamic panel data, J. Statist. Plann. Inference, 140, 11, 3476-3497 (2010) · Zbl 1205.62195
[25] Geraci, M., Linear quantile mixed models: The lqmm package for Laplace quantile regression, J. Statist. Softw., 57, 13, 1-29 (2014)
[26] Geraci, M., Qtools: A collection of models and other tools for quantile inference, R J., 8, 2, 117-138 (2016)
[27] Geraci, M., Additive quantile regression for clustered data with an application to children’s physical activity, J. R. Statist. Soc. C (2018), Pre-print available at ArXiv e-prints: arxiv:1803.05403v1 [stat.ME]
[28] Geraci, M.; Bottai, M., Quantile regression for longitudinal data using the asymmetric Laplace distribution, Biostatistics, 8, 1, 140-154 (2007) · Zbl 1170.62380
[29] Geraci, M.; Bottai, M., Linear quantile mixed models, Stat. Comput., 24, 3, 461-479 (2014) · Zbl 1325.62010
[30] Gilchrist, W., Statistical Modelling with Quantile Functions (2000), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL
[31] Gory, J.J., Craigmile, P.F., MacEachern, S.N., 2016. Marginally interpretable generalized linear mixed models, ArXiv e-prints, arxiv:1610.01526; Gory, J.J., Craigmile, P.F., MacEachern, S.N., 2016. Marginally interpretable generalized linear mixed models, ArXiv e-prints, arxiv:1610.01526
[32] Huang, Y.; Chen, J., Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features, Stat. Med., 35, 30, 5666-5685 (2016)
[33] Karlsson, A., Nonlinear quantile regression estimation of longitudinal data, Comm. Statist. Simulation Comput., 37, 1, 114-131 (2008) · Zbl 1139.62021
[34] Koenker, R., Quantile regression for longitudinal data, J. Multivariate Anal., 91, 1, 74-89 (2004) · Zbl 1051.62059
[35] Koenker, R., Quantile Regression (2005), Cambridge University Press: Cambridge University Press New York, NY · Zbl 1111.62037
[36] Koenker, R., quantreg: Quantile Regression; 2016, R package version 5.29.; Koenker, R., quantreg: Quantile Regression; 2016, R package version 5.29.
[37] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 1, 33-50 (1978) · Zbl 0373.62038
[38] Koenker, R.; Geling, O., Reappraising medfly longevity, J. Amer. Statist. Assoc., 96, 454, 458-468 (2001) · Zbl 1019.62100
[39] Koenker, R.; Park, B. J., An interior point algorithm for nonlinear quantile regression, J. Econometrics, 71, 1-2, 265-283 (1996) · Zbl 0855.62030
[40] Kwan, K. C.; Breault, G. O.; Umbenhauer, E. R.; McMahon, F. G.; Duggan, D. E., Kinetics of indomethacin absorption, elimination, and enterohepatic circulation in man, J. Pharmacokinetics Biopharmaceutics, 4, 3, 255-280 (1976)
[41] Lamarche, C., Robust penalized quantile regression estimation for panel data, J. Econometrics, 157, 2, 396-498 (2010) · Zbl 1431.62161
[42] Lindsey, J. K., Nonlinear Models for Medical Statistics (2001), Oxford University Press: Oxford University Press New York, NY · Zbl 1063.62597
[43] Lindstrom, M. J.; Bates, D. M., Nonlinear mixed effects models for repeated measures data, Biometrics, 46, 3, 673-687 (1990)
[44] Lipsitz, S. R.; Fitzmaurice, G. M.; Molenberghs, G.; Zhao, L. P., Quantile regression methods for longitudinal data with drop-outs: Application to CD4 cell counts of patients infected with the human immunodeficiency virus, J. R. Statist. Soc. C, 46, 4, 463-476 (1997) · Zbl 0908.62114
[45] Madsen, K.; Nielsen, H. B., A finite smoothing algorithm for linear \(l_1\) estimation, SIAM J. Optim., 3, 2, 223-235 (1993) · Zbl 0781.65115
[46] Marino, M. F.; Farcomeni, A., Linear quantile regression models for longitudinal experiments: an overview, METRON, 73, 2, 229-247 (2015) · Zbl 1329.62317
[47] McCulloch, C. E.; Neuhaus, J. M., Misspecifying the shape of a random effects distribution: Why getting it wrong may not matter, Statist. Sci., 26, 3, 388-402 (2011) · Zbl 1246.62169
[48] Mizera, I., Quantile regression: Penalized, (Koenker, R.; Chernozhukov, V.; He, X.; Peng, L., Handbook of Quantile Regression. Handbook of Quantile Regression, Handbook of Modern Statistical Methods (2018), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL), 21-39 · Zbl 1395.62003
[49] Muggeo, V. M.R.; Sciandra, M.; Augugliaro, L., Quantile regression via iterative least squares computations, J. Stat. Comput. Simul., 82, 11, 1557-1569 (2012) · Zbl 1431.62166
[50] Muir, P. R.; Wallace, C. C.; Done, T.; Aguirre, J. D., Limited scope for latitudinal extension of reef corals, Science, 348, 6239, 1135-1138 (2015)
[51] Ng, S. W.; Howard, A. G.; Wang, H. J.; Su, C.; Zhang, B., The physical activity transition among adults in China: 1991-2011, Obesity Rev., 15, S1, 27-36 (2014)
[52] Noufaily, A.; Jones, M. C., Parameric quantile regression based on the generalized gamma distribution, J. R. Statist. Soc. C, 62, 5, 723-740 (2013)
[53] Oberhofer, W.; Haupt, H., Asymptotic theory for nonlinear quantile regression under weak dependence, Econometric Theory, 32, 3, 686-713 (2016) · Zbl 1441.62822
[54] Panik, M. J., Growth Curve Modeling: Theory and Applications (2014), John Wiley and Sons: John Wiley and Sons Hoboken, NJ · Zbl 1306.62029
[55] Parente, P. M.D. C.; Santos Silva, J. M.C., Quantile regression with clustered data, J. Econometric Methods, 5, 1, 1-16 (2016) · Zbl 1345.62182
[56] Patel, D. E.; Cumberland, P. M.; Walters, B. C.; Russell-Eggitt, I.; Cortina-Borja, M.; Rahi, J. S., Study of optimal perimetric testing in children (OPTIC): Normative visual field values in children, Ophthalmology, 122, 8, 1711-1717 (2015)
[57] Patel, D.; Geraci, M.; Cortina-Borja, M., Modelling normative kinetic perimetry isopters using mixed-effects quantile regression, J. Vis., 16, 7, 1-6 (2016)
[58] Pinheiro, J.; Bates, D., Approximations to the log-likelihood function in the nonlinear mixed-effects model, J. Comput. Graph. Statist., 4, 1, 12-35 (1995)
[59] Pinheiro, J. C.; Bates, D. M., Mixed-Effects Models in S and S-PLUS (2000), Springer Verlag: Springer Verlag New York · Zbl 0953.62065
[60] Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2014. nlme: Linear and nonlinear mixed effects models; R package version 3.1-117, http://CRAN.R-project.org/package=nlme; Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2014. nlme: Linear and nonlinear mixed effects models; R package version 3.1-117, http://CRAN.R-project.org/package=nlme
[61] Powell, J. L., Estimation of semiparametric models, (Robert, F. E.; Daniel, L. M., Handbook of Econometrics, Vol. 4 (1994), Elsevier), 2443-2521
[62] R: A Language and Environment for Statistical Computing (2016), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[63] Rehkopf, D. H., Quantile regression for hypothesis testing and hypothesis screening at the dawn of big data, Epidemiology, 23, 5, 665-667 (2012)
[64] Reich, B. J.; Bondell, H. D.; Wang, H. J., Flexible Bayesian quantile regression for independent and clustered data, Biostatistics, 11, 2, 337-352 (2010) · Zbl 1437.62589
[65] Ritz, J.; Spiegelman, D., Equivalence of conditional and marginal regression models for clustered and longitudinal data, Stat. Methods Med. Res., 13, 4, 309-323 (2004) · Zbl 1121.62657
[66] Vonesh, E. F.; Wang, H.; Nie, L.; Majumdar, D., Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models, J. Amer. Statist. Assoc., 97, 457, 271-283 (2002) · Zbl 1073.62591
[67] Wang, J., Bayesian quantile regression for parametric nonlinear mixed effects models, Stat. Methods Appl., 21, 3, 279-295 (2012) · Zbl 1329.62150
[68] Wei, Y.; Terry, M. B., R: “Quantile regression-opportunities and challenges from a user’s perspective”, Am. J. Epidemiol., 181, 2, 152-153 (2015)
[69] Winkelmann, R., Reforming health care: Evidence from quantile regressions for counts, J. Health Econ., 25, 1, 131-145 (2006)
[70] Yang, Y.; Wang, H. J.; He, X., Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood, Internat. Statist. Rev., 84, 3, 327-344 (2016) · Zbl 07763523
[71] Yuan, Y.; Yin, G., Bayesian quantile regression for longitudinal studies with nonignorable missing data, Biometrics, 66, 1, 105-114 (2010) · Zbl 1187.62183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.