×

Strichartz and local smoothing estimates for stochastic dispersive equations with linear multiplicative noise. (English) Zbl 1507.35222

In this paper, the author studies the stochastic dispersive equation with linear multiplicative noise \[ \begin{cases} dX(t)=i P(x,D) X(t) dt+F(t) dt - \mu X(t) dt +X(t) d W(t)\,, \quad t \in (0,T)\,, \\ X(0)=X_0.\tag{1} \end{cases} \] Here, \(X\) and \(F\) are complex-valued functions on \([0,T] \times \mathbb{R}^d, T \in (0,\infty)\), \(P(x,D)\) is a pseudodifferential operator of order \(m \geq 2\) and \(D=-i (\delta_{x_1},\ldots,\delta_{x_n})\). Furthermore, \(W\) is a coloured Wiener process taken to be of the form \[ W(t,x)=\sum_{j=1}^{N} \mu_j e_j(x) \beta_j(t), \] for \(e_j\) real-valued functions and \(\beta_j\) independent real Brownian motions on a probability space \((\Omega,\mathcal{F}, \mathbb{P})\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\). Moreover, \[ \mu(x)=\frac{1}{2} \sum_{j=1}^{N} |\mu_j|^2 e_j^2(x). \] The main result of the paper is to prove pathwise Strichartz and local smoothing estimates for (1), under suitable assumptions. This result is then applied to prove well-posedness for a general class of stochastic nonlinear Schrödinger equations with variable coefficients and lower order perturbations. Furthermore, one obtains \(\mathbb{P}\)-integrability of such stochastic nonlinear Schrödinger equations with constant coefficients in both the mass- and energy-subcritical regime.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35R60 PDEs with randomness, stochastic partial differential equations
35S05 Pseudodifferential operators as generalizations of partial differential operators
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35B65 Smoothness and regularity of solutions to PDEs
60J65 Brownian motion
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] S. Albeverio, Z. Brzeźniak, and A. Daletskii, Stochastic Camassa-Holm equation with convection type noise, J. Differential Equations, 276 (2021), pp. 404-432. · Zbl 1469.60202
[2] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 1998. · Zbl 0906.34001
[3] O. Bang, P. L. Christiansen, F. If, K. O. Rasmussen, and Y. B. Gaididei, Temperature effects in a nonlinear model of monolayer Scheibe aggregates, Phys. Rev. E, 9 (1994), pp. 4627-4636.
[4] V. Barbu, G. Da Prato, and M. Röckner, Stochastic porous media equations and self-organized criticality, Comm. Math. Phys., 285 (2009), pp. 901-923. · Zbl 1176.35182
[5] V. Barbu and M. Röckner, An operatorial approach to stochastic partial differential equaitons driven by linear multiplicative noise, J. Eur. Math. Soc., 17 (2015), pp. 1789-1815. · Zbl 1327.60122
[6] V. Barbu, M. Röckner, and D. Zhang, The stochastic nonlinear §equation with multiplicative noise: The rescaling aproach, J. Nonlinear Sci., 24 (2014), pp. 383-409. · Zbl 1300.35116
[7] V. Barbu, M. Röckner, and D. Zhang, Stochastic nonlinear Schrödinger equations, Nonlinear Anal., 136 (2016), pp. 168-194. · Zbl 1336.60118
[8] V. Barbu, M. Röckner, and D. Zhang, The stochastic logarithmic Schrödinger equation, J. Math. Pures Appl., 107 (2017), pp. 123-149. · Zbl 1360.60119
[9] V. Barbu, M. Röckner, and D. Zhang, Stochastic nonlinear Schrödinger equation: No blow-up in the non-conservative case, J. Differential Equations, 263 (2017), pp. 7919-7940. · Zbl 1378.60088
[10] V. Barbu, M. Röckner, and D. Zhang, Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise, Ann. Probab., 46 (2018), pp. 1957-1999. · Zbl 1431.60053
[11] A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case, Lecture Notes in Phys., 782, Springer-Verlag, Berlin, 2009. · Zbl 1182.81001
[12] J. M. Bouclet and N. Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math., 129 (2007), pp. 1565-1609. · Zbl 1154.35077
[13] J. M. Bouclet and N. Tzvetkov, On global Strichartz estimates for non-trapping metrics, J. Funct. Anal., 254 (2008), pp. 1661-1682. · Zbl 1168.35005
[14] Z. Brzeźniak, M. Capiński, and F. Flandoli, A convergence result for stochastic partial differential equations, Stochastics 24 (1988), pp. 423-445. · Zbl 0653.60049
[15] Z. Brzeźniak, B. Goldys, and T. Jegaraj, Large deviations and transitions between equilibria for stochastic Landau-Lifshitz-Gilbert equation, Arch. Ration. Mech. Anal., 226 (2017), pp. 497-558. · Zbl 1373.35294
[16] Z. Brzeźniak, U. Manna, and D. Mukherjee, Wong-Zakai approximation for the stochastic Landau-Lifshitz-Gilbert equations, J. Differential Equations, 267 (2019), pp. 776-825. · Zbl 1447.60090
[17] Z. Brzeźniak and A. Millet, On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold, Potential Anal., 41 (2014), pp. 269-315. · Zbl 1304.58019
[18] Z. Brzeźniak, W. Liu, and J. H. Zhu, The stochastic Strichartz estimates and stochastic nonlinear Schrödinger equations driven by Lévy noise, J. Funct. Anal., 281 (2021), 109021. · Zbl 1465.60058
[19] N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), pp. 569-605. · Zbl 1067.58027
[20] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math. 10, AMS, Providence, RI, 2003. · Zbl 1055.35003
[21] S. Cerrai and A. Debussche, Large deviations for the two-dimensional stochastic Navier-Stokes equation with vanishing noise correlation, Ann. Inst. Henri Poincaré Probab. Stat., 55 (2019), pp. 211-236. · Zbl 1418.60069
[22] H. Chihara, Smoothing effects of dispersive pseudodifferential equations, Comm. Partial Differential Equations, 27 (2002), pp. 1953-2005. · Zbl 1018.35077
[23] K. Chouk and M. Gubinelli, Nonlinear PDEs with Modulated Dispersion II: KdV Equations, preprint, arXiv:1406.7675, 2014. · Zbl 1337.35132
[24] K. Chouk and M. Gubinelli, Nonlinear PDEs with modulated dispersion I: Nonlinear Schrödinger equations, Comm. Partial Differential Equations, 40 (2015), pp. 2047-2081. · Zbl 1337.35132
[25] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), pp. 413-439. · Zbl 0667.35061
[26] W. Craig, T. Kappeler, and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48 (1995), pp. 769-860. · Zbl 0856.35106
[27] A. de Bouard and A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), pp. 215-251. · Zbl 0912.60074
[28] A. de Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Comm. Math. Phys., 205 (1999), pp. 161-181. · Zbl 0952.60061
[29] A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in \(H^1\), Stoch. Anal. Appl., 21 (2003), pp. 97-126. · Zbl 1027.60065
[30] A. de Bouard and A. Debussche, The Korteweg-de Vries equation with multiplicative homogeneous noise, in Stochastic Differential Equations: Theory and Applications, P. H. Baxendale and S. V. Lototsky eds., Interdiscip. Math. Sci. 2, World Scientific, River Edge, NJ, 2007, pp. 113-133. · Zbl 1137.35086
[31] A. de Bouard and A. Debussche, On a stochastic Korteweg-de Vries equation with homogeneous noise, in Séminaire: Équations aux Dérivées Partielles, 2007-2008, Sémin. Équ. Dériv. Partielles, 15, École Polytechnique, Palaiseau, France, 2009. · Zbl 1137.35086
[32] A. de Bouard and A. Debussche, Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise, Electron. J. Probab., 14 (2009), pp. 1727-1744. · Zbl 1185.35222
[33] A. de Bouard and A. Debussche, The nonlinear Schrödinger equation with white noise dispersion, J. Funct. Anal., 259 (2010), pp. 1300-1321. · Zbl 1193.35213
[34] A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger evolution equations and applications, Nonlinearity, 25 (2012), pp. 2993-3022. · Zbl 1256.35145
[35] A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrödinger equation with white noise dispersion, J. Math. Pures Appl., 96 (2011), pp. 363-376. · Zbl 1234.35242
[36] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Stoch. Model. Appl. Probab. 38. Springer-Verlag, Berlin, 2010. · Zbl 1177.60035
[37] S. Doi, On the Cauchy problem for Schrödinger type equation and the regularity of solutions, J. Math. Kyoto Univ., 34 (1994), pp. 319-328. · Zbl 0807.35026
[38] S. Doi, Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations, 21 (1996), pp. 163-178. · Zbl 0853.35025
[39] S. Doi, Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann., 318 (2000), pp. 355-389. · Zbl 0969.35029
[40] C. Fan, Y. Su, and D. Zhang, A note on log-log blow up solutions for stochastic nonlinear Schrödinger equations, Stoch PDE Anal. Comput. (2021), https://doi.org/10.1007/s40072-021-00213-x. · Zbl 1501.35370
[41] E. Gautier, Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications, ESAIM Probab. Stat., 9 (2005), pp. 74-97. · Zbl 1136.60346
[42] E. Gautier, Uniform large deviations for the nonlinear Schrödinger equation with multiplicative noise, Stochastic Process. Appl., 115 (2005), pp. 1904-1927. · Zbl 1085.60016
[43] E. Gautier, Stochastic nonlinear Schrödinger equations driven by a fractional noise well-posedness, large deviations and support, Electron. J. Probab., 12 (2007), pp. 848-861. · Zbl 1127.60057
[44] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), pp. 309-327. · Zbl 0586.35042
[45] S. Herr, M. Röckner, and D. Zhang, Scattering for stochastic nonlinear Schrödinger equations, Comm. Math. Phys., 368 (2019), pp. 843-884. · Zbl 1416.35239
[46] F. Hornung, The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates, J. Evol. Equ., 18 (2018), pp. 1085-1114. · Zbl 1401.35257
[47] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in Applied Mathematics, Adv. Math. Suppl. Stud. 8, Academic Press, New York, 1983, pp. 93-128. · Zbl 0549.34001
[48] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955-980. · Zbl 0922.35028
[49] C. E. Kenig, The Cauchy Problem for Quasilinear Schrödinger Equation (Following Kenig-Ponce-Vega), arXiv:1309.3291v1, 2013.
[50] C. E. Kenig, G. Ponce, and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), pp. 585-610. · Zbl 0795.35105
[51] C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), pp. 33-69. · Zbl 0738.35022
[52] C. E. Kenig, G. Ponce, and L. Vega, The Cauchy problem for quasi-linear Schrödinger equations, Invent. Math., 158 (2004), pp. 343-388. · Zbl 1177.35221
[53] C. E. Kenig, G. Ponce, C. Rolvung, and L. Vega, The general quasilinear ultrahyperbolic Schrödinger equation, Adv. Math., 206 (2006), pp. 402-433. · Zbl 1122.35137
[54] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math., 58 (2005), pp. 217-284. · Zbl 1078.35143
[55] H. Kumano-go, Pseudodifferential Operators, MIT Press, Cambridge, MA, 1981.
[56] F. Linares and G. Ponce, I. Introduction to Nonlinear Dispersive Equations, Universitext, Springer, New York, 2009. · Zbl 1178.35004
[57] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. · Zbl 1361.60002
[58] J. Marzuola, J. Metcalfe, and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), pp. 1497-1553. · Zbl 1180.35187
[59] L. Robbianoand and C. Zuily, Strichartz estimates for the Schrödinger equation with variable coefficients, Mém. Soc. Math. Fr. (N.S.), 101-102 (2005). · Zbl 1097.35002
[60] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), pp. 451-513. · Zbl 1063.35035
[61] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), pp. 699-715. · Zbl 0631.42010
[62] H. Smith and C. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations, 25 (2000), pp. 2171-2183. · Zbl 0972.35014
[63] G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations, 27 (2002), pp. 1337-1372. · Zbl 1010.35015
[64] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), pp. 705-714. · Zbl 0372.35001
[65] Y. Su and D. Zhang, Minimal Mass Blow-Up Solutios to Rough Nonlinear Schrödinger Equations, arXiv:2002.09659v1, 2020.
[66] Y. Su and D. Zhang, On the Multi-Bubble Blow-Up Solutions to Rough Nonlinear Schrödinger Equations, arXiv:2012.14037v1, 2020.
[67] T. Tao Nonlinear Dispersive Equations; Local and Global Analysis, CBMS Reg. Conf. Ser. Math., 106, AMS, Providence, RI, 2006. · Zbl 1106.35001
[68] D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), pp. 571-634. · Zbl 1159.35315
[69] M. E. Taylor, Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials, Math. Surveys Monographs 81, AMS, Providence, RI, 2000. · Zbl 0963.35211
[70] L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), pp. 874-878. · Zbl 0654.42014
[71] D. Zhang, Stochastic Nonlinear Schrödinger Equations in the Defocusing Mass and Energy Critical Cases, arXiv:1811.00167v2, 2018.
[72] D. Zhang, Optimal bilinear control of stochastic nonlinear Schrödinger equations: Mass-(sub)critical case, Probab. Theory Related Fields, 178 (2020), pp. 69-120. · Zbl 1447.60127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.