×

Large deviations and transitions between equilibria for stochastic Landau-Lifshitz-Gilbert equation. (English) Zbl 1373.35294

Summary: We study a stochastic Landau-Lifshitz equation on a bounded interval and with finite dimensional noise. We first show that there exists a pathwise unique solution to this equation and that this solution enjoys the maximal regularity property. Next, we prove the large deviations principle for the small noise asymptotic of solutions using the weak convergence method. An essential ingredient of the proof is the compactness, or weak to strong continuity, of the solution map for a deterministic Landau-Lifschitz equation when considered as a transformation of external fields. We then apply this large deviations principle to show that small noise can cause magnetisation reversal. We also show the importance of the shape anisotropy parameter for reducing the disturbance of the solution caused by small noise. The problem is motivated by applications from ferromagnetic nanowires to the fabrication of magnetic memories.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35R05 PDEs with low regular coefficients and/or low regular data
60F10 Large deviations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35D35 Strong solutions to PDEs
78A25 Electromagnetic theory (general)
82D77 Quantum waveguides, quantum wires
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Elsevier Science, Amsterdam, 2003 · Zbl 1098.46001
[2] Albeverio S., Brzeźniak Z., Wu J.: Existence of global solutions and invariant measures for stochatic differential equations driven by Possion type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371(1), 309-322 (2010) · Zbl 1197.60050 · doi:10.1016/j.jmaa.2010.05.039
[3] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Handbook of Differential Equations, Volume 1 (eds. C. M. Dafermos and E. Feireisl). Elsevier, North Holland, 2002 · Zbl 1082.35001
[4] Ball J.M.: Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci. 7(5), 475-502 (1997) · Zbl 0903.58020 · doi:10.1007/s003329900037
[5] Ban̆as, L., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic ferromagnetism. Analysis and Numerics. De Gruyter, Berlin, 2014 · Zbl 1288.82001
[6] Berkov, D.V.: Magnetization dynamics including thermal fluctuations: basic phenomenology, fast remagnetization processes and transitions over high-energy barriers. In Handbook of Magnetism and Advanced Magnetic Materials (Eds. H. Kronmüller and S. Parkin), Vol. 2, Wiley, Micromagnetism, 2007 · Zbl 1117.60064
[7] Brzeźniak Z.: Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal. 4(1), 145 (1995) · Zbl 0831.35161
[8] Brzeźniak, Z., Carroll, A.: The stochastic geametric heat equation (in preparation) · Zbl 1088.34054
[9] Brzeźniak Z., Elworthy K.D.: Stochastic differential equations on Banach manifolds. Methods Funct. Anal. Topology 6(1), 43-84 (2000) · Zbl 0965.58028
[10] Brzeźniak, Z., Goldys, B., Jegaraj, T.: Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation. Appl. Math. Res. Exp. doi:10.1093/amrx/abs009, 2012 · Zbl 1272.60041
[11] Brzeźniak, Z., Goldys, B., Jegaraj, T.: Existence, uniqueness, regularity and small noise asymptotics for a stochastic Landau-Lifshitz equation on a bounded one dimensional domain. arXiv:1202.0370v1, 2012. · Zbl 1197.60050
[12] Brzeźniak, Z., Goldys, B., Ondreját, M.: Stochastic geometric partial differential equations. In: New Trends in Stochastic Analysis and Related Topics, 1-32, Interdiscip. Math. Sci., 12, World Sci. Publ., Hackensack, 2012 · Zbl 1432.58032
[13] Brzeźniak, Z., Li, L.: Weak solutions of the Stochastic Landau-Lifschitz-Gilbert Equations with non-zero anisotrophy energy (submitted). arXiv:1403.5220v2 · Zbl 1398.35304
[14] Brzeźniak Z., Li Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358(12), 5587-5629 (2006) · Zbl 1113.60062 · doi:10.1090/S0002-9947-06-03923-7
[15] Brzeźniak, Z., Motyl, E., Ondreját, M.: Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains (submitted). arXiv:1502.02637 · Zbl 1388.60107
[16] Brzeźniak Z., Ondreját M.: Weak solutions to stochastic wave equations with values in Riemannian manifolds. Comm. Partial Differ. Equ. 36, 1624-1653 (2011) · Zbl 1238.60073 · doi:10.1080/03605302.2011.574243
[17] Brzeźniak Z., Ondreját M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. Ann. Probab. 41, 1938-1977 (2013) · Zbl 1286.60058 · doi:10.1214/11-AOP690
[18] Budhiraja A., Dupuis P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39-61 (2000) · Zbl 0994.60028
[19] Carbou G., Fabrie P.: Regular solutions for Landau-Lifschitz equation in a bounded domain. Differ. Integral Equ. 14, 213-229 (2001) · Zbl 1161.35421
[20] Carbou G.: Metastability of wall configurations in ferromagnetic nanowires. SIAM J. Math. Anal. 46, 45-95 (2014) · Zbl 1288.35070 · doi:10.1137/13090568X
[21] Carroll, A.: The stochastic nonlinear heat equation, Ph.D. Thesis. The University of Hull, 1999 · Zbl 1113.60062
[22] Chojnowska-Michalik, A.: Stochastic differential equations in Hilbert spaces. Probability theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1976), pp. 53-74, Banach Center Publ., 5, PWN, Warsaw, 1979 · Zbl 1286.60058
[23] Chueshov I., Millet A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379-420 (2010) · Zbl 1196.49019 · doi:10.1007/s00245-009-9091-z
[24] Chung, K.L., Williams R.J.: Introduction to Stochastic Integration. 2nd edn. Birkhäuser, Boston, 1990 · Zbl 0725.60050
[25] DaPrato G., Flandoli F., Priola E., Röckner M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306-3344 (2013) · Zbl 1291.35455 · doi:10.1214/12-AOP763
[26] DaPrato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992 · Zbl 1107.82068
[27] Daners D.: Perturbation of semi-linear evolution equations under weak assumptions at initial time. J. Differ. Equ. 210(2), 352-382 (2005) · Zbl 1088.34054 · doi:10.1016/j.jde.2004.08.004
[28] Duan J., Millet A.: Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl. 119, 2052-2081 (2009) · Zbl 1163.60315 · doi:10.1016/j.spa.2008.10.004
[29] Dudley, R.M.: Real Analysis and Probability. Wadsworth & Brooks/Cole, Pacific Grove, 1989 · Zbl 0686.60001
[30] Flandoli F., Ga̧tarek D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102, 367-391 (1995) · Zbl 0831.60072 · doi:10.1007/BF01192467
[31] Funaki T.: A stochastic partial differential equation with values in a manifold. J. Funct. Anal. 109, 257-288 (1992) · Zbl 0768.60055 · doi:10.1016/0022-1236(92)90019-F
[32] Gilbert T.L.: A Lagrangian formulation of the gyromagnetic equation of the magnetisation field. Phys. Rev. 100, 1243 (1955)
[33] Gyöngy, I., Krylov, N.V.: On stochastics equations with respect to semimartingales. II. Itô formula in Banach spaces. Stochastics6(3-4), 153-173, 1981/1982 · Zbl 1291.35455
[34] Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes. Springer, Berlin, 2003 · Zbl 1018.60002
[35] Kallenberg, O.: Foundations of Modern Probability. 2nd edn. Springer, Berlin, 2002 · Zbl 0996.60001
[36] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. 2nd edn. Springer, New York, 1991 · Zbl 0734.60060
[37] Kohn R.V., Reznikoff M.G., Vanden-Eijnden E.: Magnetic elements at finite temperature and large deviation theory. J. Nonlinear Sci. 15, 223-253 (2005) · Zbl 1107.82068 · doi:10.1007/s00332-005-0671-z
[38] Krylov, N., Rozovskii, B.: Stochastic Evolution Equations. Stochastic Differential Equations: Theory and Applications, World Sci. Publ., Hackensack, 2007 · Zbl 1130.60069
[39] Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowj. 8, 153 (1935); terHaar, D. (eds.) Reproduced in: Collected Papers of L. D. Landau, pp. 101-114., Pergamon Press, NJ 1965 · Zbl 0012.28501
[40] Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 181. Springer, New York, 1972 · Zbl 0227.35001
[41] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426, 2004 · Zbl 1053.60071
[42] Pardoux E.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127-167 (1979) · Zbl 0424.60067 · doi:10.1080/17442507908833142
[43] Pardoux, E.: Integrales Stochastiques Hilbertiennes, Cahiers Mathématiques de la Decision No. 7617, Université Paris Dauphine, 1976
[44] Rosa R.: The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear Anal. 32, 71-85 (1998) · Zbl 0901.35070 · doi:10.1016/S0362-546X(97)00453-7
[45] Schmalfuss B.: Qualitative properties for the stochastic Navier-Stokes equations. Nonlinear Anal. 28(9), 1545-1563 (1997) · Zbl 0882.60058 · doi:10.1016/S0362-546X(96)00015-6
[46] Sritharan S.S., Sundar P.: Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636-1659 (2006) · Zbl 1117.60064 · doi:10.1016/j.spa.2006.04.001
[47] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001. xiv+408 pp. · Zbl 0981.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.