×

Hausdorff dimension of frequency sets in beta-expansions. (English) Zbl 1507.11069

Let \(\beta >1\) and consider a \(\beta\)-shift, \(T_\beta : [0,1] \rightarrow [0,1]\), given by \(T_\beta(x) = \beta x- \lfloor \beta x \rfloor\). The map induces \(\beta\)-expansions of \(x \in [0,1]\), \[ x = \sum_{n=1}^\infty \frac{\varepsilon_n(x,\beta)}{\beta^n}, \quad \varepsilon_n(x,\beta) = \lfloor \beta T_\beta^{n-1}(x)\rfloor. \] The sequences \((\varepsilon_n(x,\beta))\) in \(\{0,1, \dots, \lceil \beta \rceil - 1\}^\mathbb{N}\) arising in this way from some \(x\in [0,1]\) are called admissible. The closure of the set in the product topology of the discrete topology on \(\{0,1, \dots, \lceil \beta \rceil - 1\}\) is denoted by \(S_\beta\).
It is first shown that for a set \(Z \in S_\beta\), the Hausdorff dimension of \(Z\) as a subset of \(\{0,1, \dots, \lceil \beta \rceil - 1\}^\mathbb{N}\) is equal to the Hausdorff dimension of \[ \left\{ \sum_{n=1}^\infty \frac{\varepsilon_n(x,\beta)}{\beta^n} : (\varepsilon_n(x,\beta)) \in Z\right\} \] as a subset of \([0,1]\).
Suppose now that \(\beta > 1\) is such that the \(\beta\)-expansion of \(1\) terminates. It is show that in order to calculate the Hausdorff dimension of the frequency set \[ F_{\beta, a} = \left\{x \in [0,1) : \lim_{n\rightarrow \infty} \frac{\# \{1 \le k \le n : \varepsilon_k(x,\beta) = 0\}}{n} = a \right\}, \] one needs only find the maximal entropy of certain Markov measures on the symbolic shift, with the set of measures depending on the length of the expansion of \(1\), and then divide by \(\log \beta\). Finally, for \(\beta \in (1,2)\) with \((\varepsilon_n(1,\beta)) = 1^m 0^\infty\), it is deduced from the above that for \(a < 1/m\), \(F_{\beta, a} = \emptyset\); and that in order to calculate the Hausdorff dimension of \(F_{\beta, a}\), one just needs to calculate \[ \frac{1}{\log \beta} \max f_a(x_1, \dots, x_{m-2}), \] where \(f_a\) is an explicit function depending on \(a\) and \(m\), and the maximum is taken over an explicit region.

MSC:

11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
28A80 Fractals

References:

[1] Alcaraz Barrera, R.; Baker, S.; Kong, D., Entropy, topological transitivity, and dimensional properties of unique \(q\)-expansions, Trans. Amer. Math. Soc., 371, 3209-3258 (2019) · Zbl 1435.11016 · doi:10.1090/tran/7370
[2] Baker, S., Digit frequencies and self-affine sets with non-empty interior, Ergodic Theory Dynam. Syst., 40, 7, 1755-1787 (2020) · Zbl 1470.11010 · doi:10.1017/etds.2018.127
[3] Baker, S.; Kong, D., Numbers with simply normal \(\beta \)-expansions, Math. Proc. Cambridge Philos. Soc., 167, 1, 171-192 (2019) · Zbl 1435.11017 · doi:10.1017/S0305004118000270
[4] Besicovitch, AS, On the sum of digits of real numbers represented in the dyadic system, Math. Ann., 110, 1, 321-330 (1935) · Zbl 0009.39503 · doi:10.1007/BF01448030
[5] Blanchard, F., \( \beta \)-expansions and symbolic dynamics, Theoret. Comput. Sci., 65, 131-141 (1989) · Zbl 0682.68081 · doi:10.1016/0304-3975(89)90038-8
[6] Borel, E., Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo, 2, 27, 247-271 (1909) · JFM 40.0283.01 · doi:10.1007/BF03019651
[7] Bowen, R., Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184, 125-136 (1973) · Zbl 0274.54030 · doi:10.1090/S0002-9947-1973-0338317-X
[8] Bugeaud, Y.; Wang, B-W, Distribution of full cylinders and the Diophantine properties of the orbits in \(\beta \)-expansions, J. Fractal Geom., 1, 221-241 (2014) · Zbl 1309.11062 · doi:10.4171/JFG/6
[9] de Vries, M.; Komornik, V., Unique expansions of real numbers, Adv. Math., 221, 390-427 (2009) · Zbl 1166.11007 · doi:10.1016/j.aim.2008.12.008
[10] Falconer, KJ, Fractal geometry: mathematical foundations and applications (1990), Chichester: John Wiley & Sons, Chichester · Zbl 0689.28003
[11] Fan, A-H; Feng, D-J; Wu, J., Recurrence, dimension and entropy, J. Lond. Math. Soc., 2, 64, 229-244 (2001) · Zbl 1011.37003 · doi:10.1017/S0024610701002137
[12] Fan, A-H; Wang, B-W, On the lengths of basic intervals in beta expansions, Nonlinearity, 25, 1329-1343 (2012) · Zbl 1256.11044 · doi:10.1088/0951-7715/25/5/1329
[13] Fan, A.; Zhu, H., Level sets of \(\beta \)-expansions, C. R. Math. Acad. Sci. Paris, 339, 709-712 (2004) · Zbl 1157.11311 · doi:10.1016/j.crma.2004.09.026
[14] Fang, L.; Wu, M.; Li, B., Approximation orders of real numbers by \(\beta \)-expansions, Math. Z., 296, 1-2, 13-40 (2020) · Zbl 1452.11097 · doi:10.1007/s00209-019-02402-w
[15] Frougny, C.; Solomyak, B., Finite beta-expansions, Ergodic Theory Dynam. Syst., 12, 713-723 (1992) · Zbl 0814.68065 · doi:10.1017/S0143385700007057
[16] Kitchens, BP, Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts (1998), Berlin: Springer-Verlag, Berlin · Zbl 0892.58020 · doi:10.1007/978-3-642-58822-8
[17] Li, B.; Persson, T.; Wang, B.; Wu, J., Diophantine approximation of the orbit of \(1\) in the dynamical system of beta expansions, Math. Z., 276, 799-827 (2014) · Zbl 1316.11069 · doi:10.1007/s00209-013-1223-0
[18] Li, JJ; Li, B., Hausdorff dimension of some irregular sets associated with \(\beta \)-expansions, Sci. China Math., 59, 445-458 (2016) · Zbl 1338.11076 · doi:10.1007/s11425-015-5046-9
[19] Li, Y-Q, Digit frequencies of beta-expansions, Acta Math. Hungar., 162, 2, 403-418 (2020) · Zbl 1474.11025 · doi:10.1007/s10474-020-01032-7
[20] Li, Y-Q; Li, B., Distributions of full and non-full words in beta-expansions, J. Number Theory, 190, 311-332 (2018) · Zbl 1442.11115 · doi:10.1016/j.jnt.2018.02.018
[21] Parry, W., On the \(\beta \)-expansions of real numbers, Acta Math. Hungar., 11, 401-416 (1960) · Zbl 0099.28103 · doi:10.1007/BF02020954
[22] Pfister, C-E; Sullivan, WG, Large deviations estimates for dynamical systems without the specification property. Applications to the \(\beta \)-shifts, Nonlinearity, 18, 237-261 (2005) · Zbl 1069.60029 · doi:10.1088/0951-7715/18/1/013
[23] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Hungar., 8, 477-493 (1957) · Zbl 0079.08901 · doi:10.1007/BF02020331
[24] Schmeling, J., Symbolic dynamics for \(\beta \)-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17, 675-694 (1997) · Zbl 0908.58017 · doi:10.1017/S0143385797079182
[25] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. Lond. Math. Soc., 12, 269-278 (1980) · Zbl 0494.10040 · doi:10.1112/blms/12.4.269
[26] Sidorov, N., Almost every number has a continuum of \(\beta \)-expansions, Am. Math. Mon., 110, 838-842 (2003) · Zbl 1049.11085
[27] Takens, F.; Verbitskiy, E., On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Syst., 23, 317-348 (2003) · Zbl 1042.37020 · doi:10.1017/S0143385702000913
[28] Tempelman, AA, Multifractal analysis of ergodic averages: a generalization of Eggleston’s theorem, J. Dyn. Control Syst., 7, 535-551 (2001) · Zbl 1073.37008 · doi:10.1023/A:1013158601371
[29] Thompson, D., Irregular sets, the \(\beta \)-transformation and the almost specifcation property, Trans. Am. Math. Soc., 364, 5395-5414 (2012) · Zbl 1300.37017 · doi:10.1090/S0002-9947-2012-05540-1
[30] Walters, P., An Introduction to Ergodic Theory (1982), New York-Berlin: Springer-Verlag, New York-Berlin · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.