×

Refined isogeometric analysis for generalized Hermitian eigenproblems. (English) Zbl 1506.65197

Summary: We use refined isogeometric analysis (rIGA) to solve generalized Hermitian eigenproblems \((\mathbf{Ku}=\lambda \mathbf{Mu})\). rIGA conserves the desirable properties of maximum-continuity isogeometric analysis (IGA) while it reduces the solution cost by adding zero-continuity basis functions, which decrease the matrix connectivity. As a result, rIGA enriches the approximation space and reduces the interconnection between degrees of freedom. We compare computational costs of rIGA versus those of IGA when employing a Lanczos eigensolver with a shift-and-invert spectral transformation. When all eigenpairs within a given interval \([\lambda_s,\lambda_e]\) are of interest, we select several shifts \(\sigma_k\in[\lambda_s,\lambda_e]\) using a spectrum slicing technique. For each shift \(\sigma_k\), the factorization cost of the spectral transformation matrix \(\mathbf{K}-\sigma_k\mathbf{M}\) controls the total computational cost of the eigensolution. Several multiplications of the operator matrix \((\mathbf{K}-\sigma_k\mathbf{M})^{-1}\mathbf{M}\) by vectors follow this factorization. Let \(p\) be the polynomial degree of the basis functions and assume that IGA has maximum continuity of \(p-1\). When using rIGA, we introduce \(C^0\) separators at certain element interfaces to minimize the factorization cost. For this setup, our theoretical estimates predict computational savings to compute a fixed number of eigenpairs of up to \(\mathcal{O}(p^2)\) in the asymptotic regime, that is, large problem sizes. Yet, our numerical tests show that for moderate-size eigenproblems, the total observed computational cost reduction is \(\mathcal{O}(p)\). In addition, rIGA improves the accuracy of every eigenpair of the first \(N_0\) eigenvalues and eigenfunctions, where \(N_0\) is the total number of modes of the original maximum-continuity IGA discretization.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
15A18 Eigenvalues, singular values, and eigenvectors
65D07 Numerical computation using splines

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[2] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263 (2010) · Zbl 1227.74123
[3] Auricchio, F.; Calabrò, F.; Hughes, T. J.R.; Reali, A.; Sangalli, G., A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249-252, 15-27 (2012) · Zbl 1348.65059
[4] Dalcin, L.; Collier, N.; Vignal, P.; Côrtes, A. M.A.; Calo, V. M., PetIGA: A framework for high-performance isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 308, 151-181 (2016) · Zbl 1439.65003
[5] Sarmiento, A. F.; Côrtes, A. M.A.; Garcia, D. A.; Dalcin, L.; Collier, N.; Calo, V. M., PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces, J. Comput. Sci., 18, 117-131 (2017)
[6] Reali, A.; Gomez, H., An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623-636 (2015) · Zbl 1423.74553
[7] Casquero, H.; Liu, L.; Zhang, Y.; Reali, A.; Kiendl, J.; Gomez, H., Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells, Comput. Aided Des., 82, 140-153 (2017)
[8] Hosseini, S. F.; Hashemian, A.; Reali, A., Studies on knot placement techniques for the geometry construction and the accurate simulation of isogeometric spatial curved beams, Comput. Methods Appl. Mech. Engrg., 360, Article 112705 pp. (2020) · Zbl 1441.74247
[9] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[10] Espath, L. F.R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O.N.; Cortes, A. M.A.; Dalcin, L.; Calo, V. M., Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model, J. Fluid Mech., 797, 389-430 (2016) · Zbl 1422.76037
[11] Espath, L. F.R.; Sarmiento, A. F.; Dalcin, L.; Calo, V. M., On the thermodynamics of the Swift-Hohenberg theory, Contin. Mech. Thermodyn., 29, 1335-1345 (2017) · Zbl 1392.80001
[12] Hashemian, A.; Lakzian, E.; Ebrahimi-Fizik, A., On the application of isogeometric finite volume method in numerical analysis of wet-steam flow through turbine cascades, Comput. Math. Appl., 79, 6, 1687-1705 (2020) · Zbl 1443.65159
[13] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J.R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 310-322 (2006) · Zbl 1161.74020
[14] Casquero, H.; Zhang, Y. J.; Bona-Casas, C.; Dalcin, L.; Gomez, H., Non-body-fitted fluid-structure interaction: Divergence-conforming B-splines, fully-implicit dynamics, and variational formulation, J. Comput. Phys., 374, 625-653 (2018) · Zbl 1416.74026
[15] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333-4352 (2008) · Zbl 1194.74524
[16] Clavijo, S. P.; Sarmiento, A. F.; Espath, L. F.R.; Dalcin, L.; Cortes, A. M.A.; Calo, V. M., Reactive \(n\)-species Cahn-Hilliard system: A thermodynamically-consistent model for reversible chemical reactions, J. Comput. Appl. Math., 350, 143-154 (2019) · Zbl 1410.80012
[17] Puzyrev, V.; Łoś, M.; Gurgul, G.; Calo, V.; Dzwinel, W.; Paszyński, M., Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation, Comput. Methods Biomech. Biomed. Eng., 22, 1269-1281 (2019)
[18] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 1143-1152 (2010) · Zbl 1227.78026
[19] Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A., An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations, J. Comput. Phys., 362, 264-289 (2018) · Zbl 1390.78030
[20] Collier, N.; Pardo, D.; Dalcin, L.; Paszynski, M.; Calo, V. M., The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213-216, 353-361 (2012) · Zbl 1243.65137
[21] Collier, N.; Dalcin, L.; Pardo, D.; Calo, V. M., The cost of continuity: Performance of iterative solvers on isogeometric finite elements, SIAM J. Sci. Comput., 35, A767-A784 (2013) · Zbl 1266.65221
[22] Collier, N.; Dalcin, L.; Calo, V. M., On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers, Internat. J. Numer. Methods Engrg., 100, 8, 620-632 (2014) · Zbl 1352.65486
[23] Garcia, D.; Pardo, D.; Dalcin, L.; Paszyński, M.; Collier, N.; Calo, V. M., The value of continuity: Refined isogeometric analysis and fast direct solvers, Comput. Methods Appl. Mech. Engrg., 316, 586-605 (2017) · Zbl 1439.65165
[24] Duff, I. S.; Reid, J. K., The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software, 9, 302-325 (1983) · Zbl 0515.65022
[25] Garcia, D.; Pardo, D.; Dalcin, L.; Calo, V. M., Refined isogeometric analysis for a preconditioned conjugate gradient solver, Comput. Methods Appl. Mech. Engrg., 335, 490-509 (2018) · Zbl 1440.65162
[26] Garcia, D.; Pardo, D.; Calo, V. M., Refined isogeometric analysis for fluid mechanics and electromagnetics, Comput. Methods Appl. Mech. Engrg., 356, 598-628 (2019) · Zbl 1441.76060
[27] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296 (2006) · Zbl 1119.74024
[28] Hughes, T. J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of \(p\)-method finite elements with \(k\)-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104-4124 (2008) · Zbl 1194.74114
[29] Hughes, T. J.R.; Evans, J. A.; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290-320 (2014) · Zbl 1296.65148
[30] Mazza, M.; Manni, C.; Ratnani, A.; Serra-Capizzano, S.; Speleers, H., Isogeometric analysis for 2D and 3D curl-div problems: Spectral symbols and fast iterative solvers, Comput. Methods Appl. Mech. Engrg., 344, 970-997 (2019) · Zbl 1440.82016
[31] Puzyrev, V.; Deng, Q.; Calo, V., Dispersion-optimized quadrature rules for isogeometric analysis: Modified inner products, their dispersion properties, and optimally blended schemes, Comput. Methods Appl. Mech. Engrg., 320, 421-443 (2017) · Zbl 1433.65309
[32] Deng, Q.; Calo, V., Dispersion-minimized mass for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 341, 71-92 (2018) · Zbl 1440.76056
[33] Hosseini, S. F.; Hashemian, A.; Reali, A., On the application of curve reparameterization in isogeometric vibration analysis of free-from curved beams, Comput. Struct., 209, 117-129 (2018)
[34] Deng, Q.; Bartoň, M.; Puzyrev, V.; Calo, V., Dispersion-minimizing quadrature rules for \(C^1\) quadratic isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 328, 554-564 (2018) · Zbl 1439.74406
[35] Calo, V.; Deng, Q.; Puzyrev, V., Dispersion optimized quadratures for isogeometric analysis, J. Comput. Appl. Math., 355, 283-300 (2019) · Zbl 1422.65360
[36] Deng, Q.; Puzyrev, V.; Calo, V., Optimal spectral approximation of \(2 n\)-order differential operators by mixed isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 343, 297-313 (2019) · Zbl 1440.65246
[37] Deng, Q.; Puzyrev, V.; Calo, V., Isogeometric spectral approximation for elliptic differential operators, J. Comput. Sci., 36, Article 100879 pp. (2019)
[38] Bartoň, M.; Puzyrev, V.; Deng, Q.; Calo, V., Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for B-splines, J. Comput. Appl. Math., 371, Article 112626 pp. (2020) · Zbl 1493.65054
[39] Grimes, R. G.; Lewis, J. G.; Simon, H. D., A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15, 228-272 (1994) · Zbl 0803.65044
[40] Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H., Templates for the Solution of Algebraic Eigenvalue Problems (2000), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0965.65058
[41] Ericsson, T.; Ruhe, A., The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35, 1251-1268 (1980) · Zbl 0468.65021
[42] Nour-Omid, B.; Parlett, B. N.; Ericsson, T.; Jensen, P. S., How to implement the spectral transformation, Math. Comp., 48, 663-673 (1987) · Zbl 0638.65026
[43] Xue, F.; Elman, H. C., Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation, Linear Algebra Appl., 435, 601-622 (2011) · Zbl 1253.65059
[44] Campos, C.; Roman, J. E., Strategies for spectrum slicing based on restarted Lanczos methods, Numer. Algorithms, 60, 279-295 (2012) · Zbl 1245.65040
[45] Strang, G.; Fix, G. J., (An Analysis of the Finite Element Method. An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) · Zbl 0278.65116
[46] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd New York, NY · Zbl 1378.65009
[47] Piegl, L.; Tiller, W., The NURBS Book, 646 (1997), Springer-Verlag: Springer-Verlag New York, NY · Zbl 0868.68106
[48] Gao, L.; Calo, V. M., Preconditioners based on the alternating-direction-implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients, J. Comput. Appl. Math., 273, 274-295 (2015) · Zbl 1295.65111
[49] Hernandez, V.; Roman, J. E.; Vidal, V., SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31, 351-362 (2005) · Zbl 1136.65315
[50] Hernández, V.; Román, J. E.; Tomás, A.; Vidal, V., A Survey of Software for Sparse Eigenvalue ProblemsSLEPc Technical Report STR-6 (2009), Universitat Politecnica De Valencia
[51] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., ARPACK Users’ Guide, Solution of Large-Scale Eigenvalue Problems By Implicitly Restarted Arnoldi Methods (1998), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0901.65021
[52] Parlett, B. N., The Symmetric Eigenvalue Problem (1998), Prentice-Hall, Inc.: Prentice-Hall, Inc. Upper Saddle River, NJ · Zbl 0885.65039
[53] Stewart, G. W., Matrix Algorithms, Volume II: Eigensystems (2001), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0984.65031
[54] Coakley, E. S.; Rokhlin, V., A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices, Appl. Comput. Harmon. Anal., 34, 379-414 (2013) · Zbl 1264.65051
[55] Sorensen, D. C., Implicit application of polynomial filters in a \(k\)-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13, 357-385 (1992) · Zbl 0763.65025
[56] Wu, K.; Simon, H., Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22, 602-616 (2000) · Zbl 0969.65030
[57] Stewart, G. W., A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23, 601-614 (2002) · Zbl 1003.65045
[58] Stewart, G. W., Addendum to “a Krylov-Schur algorithm for large eigenproblems”, SIAM J. Matrix Anal. Appl., 24, 599-601 (2002) · Zbl 1003.65045
[59] Olsson, K. H.A.; Ruhe, A., Rational Krylov for eigenvalue computation and model order reduction, BIT Numer. Math., 46, 99-111 (2006) · Zbl 1105.65036
[60] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[61] Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M., An energy-stable convex splitting for the phase-field crystal equation, Comput. Struct., 158, 355-368 (2015)
[62] Côrtes, A. M.A.; Coutinho, A. L.G. A.; Dalcin, L.; Calo, V. M., Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system, J. Comput. Sci., 11, 123-136 (2015)
[63] Vignal, P.; Collier, N.; Dalcin, L.; Brown, D. L.; Calo, V. M., An energy-stable time-integrator for phase-field models, Comput. Methods Appl. Mech. Engrg., 316, 1179-1214 (2017) · Zbl 1439.74471
[64] Sarmiento, A. F.; Espath, L. F.R.; Vignal, P.; Dalcin, L.; Parsani, M.; Calo, V. M., An energy-stable generalized-\( \alpha\) method for the Swift-Hohenberg equation, J. Comput. Appl. Math., 344, 836-851 (2018) · Zbl 1457.65080
[65] Romero, E.; Roman, J. E., A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc, ACM Trans. Math. Software, 40, 1-29 (2014) · Zbl 1305.65124
[66] Campos, C.; Roman, J. E., Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc, SIAM J. Sci. Comput., 38, S385-S411 (2016) · Zbl 1352.65116
[67] Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Hegna, C. C.; Roman, J. E., Stellarator microinstabilities and turbulence at low magnetic shear, J. Plasma Phys., 84, Article 905840503 pp. (2018)
[68] Keçeli, M.; Corsetti, F.; Campos, C.; Roman, J. E.; Zhang, H.; Vázquez-Mayagoitia, Á.; Zapol, P.; Wagner, A. F., SIESTA-SIPs: Massively parallel spectrum-slicing eigensolver for an ab initio molecular dynamics package, J. Comput. Chem., 39, 1806-1814 (2018)
[69] Araujo C., J. C.; Campos, C.; Engström, C.; Roman, J. E., Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures, J. Comput. Phys., 407, Article 109220 pp. (2020) · Zbl 07504696
[70] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41 (2001) · Zbl 0992.65018
[71] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392 (1998) · Zbl 0915.68129
[72] Korsch, H. J., On the nodal behaviour of eigenfunctions, Phys. Lett. A, 97, 77-80 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.