×

Refined isogeometric analysis for a preconditioned conjugate gradient solver. (English) Zbl 1440.65162

Summary: Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces \(C^0\) hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) [the authors, ibid. 316, 586–605 (2017; Zbl 1439.65165)]. At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree \(p = 3\), the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.

MSC:

65N22 Numerical solution of discretized equations for boundary value problems involving PDEs

Citations:

Zbl 1439.65165

Software:

PETSc; MUMPS; LAPACK; PetIGA

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 3941, 4135-4195 (2005) · Zbl 1151.74419
[2] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4950, 4333-4352 (2008) · Zbl 1194.74524
[3] Vignal, P. A.; Collier, N.; Calo, V. M., Phase field modeling using PetIGA, Procedia Comput. Sci., 18, 1614-1623 (2013)
[4] Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M., An energy-stable convex splitting for the phase-field crystal equation, Comput. Struct., 158, 355-368 (2015)
[5] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J.R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 4-5, 310-322 (2006) · Zbl 1161.74020
[6] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[7] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[8] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[9] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 13-16, 780-790 (2010) · Zbl 1406.76023
[10] Chang, K.; Hughes, T. J.R.; Calo, V. M., Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall, Comput. & Fluids, 68, 94-104 (2012) · Zbl 1365.76079
[11] Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 3, 371-378 (2008) · Zbl 1162.76355
[12] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 9, 3402-3414 (2010) · Zbl 1290.76037
[13] Motlagh, Y. G.; Ahn, H. T.; Hughes, T. J.R.; Calo, V. M., Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method, Comput. & Fluids, 71, 146-155 (2013) · Zbl 1365.76033
[14] Nielsen, P. N.; Gersborg, A. R.; Gravesen, J.; Pedersen, N. L., Discretizations in isogeometric analysis of Navier-Stokes flow, Comput. Methods Appl. Mech. Engrg., 200, 45-46, 3242-3253 (2011) · Zbl 1230.76042
[15] Tagliabue, A.; Dedé, L.; Quarteroni, A., Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics, Comput. & Fluids, 102, 277-303 (2014) · Zbl 1391.76360
[16] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[17] Evans, J. A.; Bazilevs, Y.; Babuka, I.; Hughes, T. J.R., n-widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 2126, 1726-1741 (2009), Advances in Simulation-Based Engineering Sciences Honoring J. Tinsley Oden · Zbl 1227.65093
[18] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 41-44, 4160-4183 (2007) · Zbl 1173.74407
[19] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5257-5296 (2006) · Zbl 1119.74024
[20] Auricchio, F.; da Veiga, L. B.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully locking-freei isogeometric approach for plane linear elasticity problems: A stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 1-4, 160-172 (2007) · Zbl 1169.74643
[21] Lipton, S.; Evans, J. A.; Bazilevs, Y.; Elguedj, T.; Hughes, T. J.R., Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 357-373 (2010) · Zbl 1227.74112
[22] Gómez, H.; Hughes, T. J.R.; Nogueira, X.; Calo, V. M., Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 25-28, 1828-1840 (2010) · Zbl 1231.76191
[23] Buffa, A.; de Falco, C.; Sangalli, G., Isogeometric analysis: Stable elements for the 2D Stokes equation, Internat. J. Numer. Methods Fluids, 65, 11-12, 1407-1422 (2011) · Zbl 1429.76044
[24] Evans, J. A.; Hughes, T. J.R., Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, J. Comput. Phys., 241, 141-167 (2013) · Zbl 1349.76054
[25] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T.; Hughes, T. J.R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Eng., 199, 13-16, 828-840 (2010) · Zbl 1406.76028
[26] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Methods Appl. Mech. Eng., 196, 49-52, 4853-4862 (2007) · Zbl 1173.76397
[27] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C. L.; Hughes, T. J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Engrg., 196, 29-30, 2943-2959 (2007) · Zbl 1121.76076
[28] Vignal, P.; Sarmiento, A.; Côrtes, A. M.; Dalcin, L.; Calo, V. M., Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration, Procedia Comput. Sci., 51, 934-943 (2015)
[29] Vignal, P.; Dalcin, L.; Collier, N.; Calo, V. M., Modeling phase-transitions using a high-performance, isogeometric analysis framework, Procedia Comput. Sci., 29, 980-990 (2014)
[30] Bazilevs, Y.; Gohean, J.; Hughes, T. J.R.; Moser, R.; Zhang, Y., Patient-specific isogeometric fluidstructure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg., 198, 45-46, 3534-3550 (2009) · Zbl 1229.74096
[31] Hossain, S. S.; Hossainy, S. F.A.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls, Comput. Mech., 49, 2, 213-242 (2011) · Zbl 1366.92059
[32] Calo, V. M.; Brasher, N. F.; Bazilevs, Y.; Hughes, T. J.R., Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Comput. Mech., 43, 1, 161-177 (2008) · Zbl 1169.76066
[33] Collier, N.; Pardo, D.; Dalcin, L.; Paszynski, M.; Calo, V. M., The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213-216, 353-361 (2012) · Zbl 1243.65137
[34] Collier, N.; Dalcin, L.; Calo, V. M., On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers, Internat. J. Numer. Methods Engrg., 100, 8, 620-632 (2014) · Zbl 1352.65486
[35] Collier, N.; Dalcin, L.; Pardo, D.; Calo, V. M., The cost of continuity: Performance of iterative solvers on isogeometric finite elements, SIAM J. Sci. Comput., 35, 2, A767-A784 (2013) · Zbl 1266.65221
[36] Pardo, D.; Paszynski, M.; Collier, N.; Alvarez, J.; Dalcin, L.; Calo, V. M., A survey on direct solvers for Galerkin methods, SeMA J., 57, 1, 107-134 (2012) · Zbl 1311.65030
[37] Garcia, D.; Pardo, D.; Dalcin, L.; Paszyski, M.; Collier, N.; Calo, V. M., The value of continuity: Refined isogeometric analysis and fast direct solvers, Comput. Methods Appl. Mech. Engrg., 316, 586-605 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.65165
[38] Garcia, D.; Bartoň, M.; Pardo, D., Optimally refined isogeometric analysis, Proc. Comput. Sci., 108, 808-817 (2017)
[39] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 1002.65042
[40] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-436 (1952) · Zbl 0048.09901
[41] Gentle, J. E., Iterative Methods for Sparse Linear Systems (1998), Springer-Verlag: Springer-Verlag Berlin, Ge
[42] Pardo, D.; Álvarez-Aramberri, J.; Paszynski, M.; Dalcin, L.; Calo, V. M., Impact of element-level static condensation on iterative solver performance, Comput. Math. Appl., 70, 10, 2331-2341 (2015) · Zbl 1443.65299
[43] Dalcin, L.; Collier, N.; Vignal, P.; Côrtes, A.; Calo, V. M., PetIGA: A framework for high-performance isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 308, 151-181 (2016) · Zbl 1439.65003
[44] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page, 2016. URL http://www.mcs.anl.gov/petsc.
[45] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.7 (2016), Argonne National Laboratory, URL http://www.mcs.anl.gov/petsc
[46] Calo, V. M.; Collier, N. O.; Pardo, D.; Paszynski, M. R., Computational complexity and memory usage for multi-frontal direct solvers used in \(p\) finite element analysis, Procedia Comput. Sci., 4, 1854-1861 (2011)
[47] Bernal, L. M.; Calo, V. M.; Collier, N.; Espinosa, G. A.; Fuentes, F.; Mahecha, J. C., Isogeometric analysis of hyperelastic materials using PetIGA, Procedia Comput. Sci., 18, 1604-1613 (2013)
[48] Côrtes, A.; Coutinho, A.; Dalcin, L.; Calo, V. M., Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system, J. Comput. Sci., 11, 123-136 (2015)
[49] L.F.R. Espath, A.F. Sarmiento, P. Vignal, B.O.N. Varga, A.M.A. Côrtes, L. Dalcin, V.M. Calo, Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model, 797 (2016) 389-430. · Zbl 1422.76037
[50] Bernal, L.; Calo, V. M.; Collier, N.; Espinosa, G.; Fuentes, F.; Mahecha, J., Isogeometric analysis of hyperelastic materials using PetIGA, Procedia Comput. Sci., 18, 1604-1613 (2013)
[51] Sarmiento, A.; Garcia, D.; Dalcin, L.; Collier, N.; Calo, V., Micropolar fluids using B-spline divergence conforming spaces, Procedia Comput. Sci., 29, 991-1001 (2014)
[52] Sarmiento, A.; Côrtes, A.; Garcia, D.; Dalcin, L.; Collier, N.; Calo, V. M., PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces, J. Comput. Sci., 18, 117-131 (2017)
[53] Espath, L. F.R.; Sarmiento, A. F.; Dalcin, L.; Calo, V. M., On the thermodynamics of the Swift-Hohenberg theory, Contin. Mech. Thermodyn., 1-11 (2017) · Zbl 1392.80001
[54] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018
[55] Amestoy, P. R.; Guermouche, A.; L’Excellent, J.-Y.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 2, 136-156 (2006)
[56] Blackford, S.; Dongarra, J., LAPACK Working Note 41 “Installation Guide for LAPACK” (1999), Department of Computer Science, University of Tennessee
[57] Dongarra, J.; Eijkhout, V.; Van der Vorst, H., An iterative solver benchmark, Sci. Program., 9, 4, 223-231 (2001)
[58] Mandel, J., Balancing domain decomposition, Commun. Numer. Methods. Eng., 9, 3, 233-241 (1993) · Zbl 0796.65126
[59] Mandel, J.; Dohrmann, C. R., Convergence of a balancing domain decomposition by constraints and energy minimization, Numer. Linear Algebra Appl., 10, 7, 639-659 (2003) · Zbl 1071.65558
[60] Badia, S.; Martín, A. F.; Principe, J., Implementation and scalability analysis of balancing domain decomposition methods, Arch. Comput. Methods Eng., 20, 3, 239-262 (2013) · Zbl 1354.65261
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.