×

The second Vassiliev measure of uniform random walks and polygons in confined space. (English) Zbl 1505.82061

Summary: Biopolymers, like chromatin, are often confined in small volumes. Confinement has a great effect on polymer conformations, including polymer entanglement. Polymer chains and other filamentous structures can be represented by polygonal curves in three-space. In this manuscript, we examine the topological complexity of polygonal chains in three-space and in confinement as a function of their length. We model polygonal chains by equilateral random walks in three-space and by uniform random walks (URWs) in confinement. For the topological characterization, we use the second Vassiliev measure. This is an integer topological invariant for polygons and a continuous functions over the real numbers, as a function of the chain coordinates for open polygonal chains. For URWs in confined space, we prove that the average value of the Vassiliev measure in the space of configurations increases as \(O(n^2)\) with the length of the walks or polygons. We verify this result numerically and our numerical results also show that the mean value of the second Vassiliev measure of equilateral random walks in three-space increases as \(O(n)\). These results reveal the rate at which knotting of open curves and not simply entanglement are affected by confinement.

MSC:

82D60 Statistical mechanics of polymers
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell (2002), New York: Garland Science, New York
[2] Arsuaga, J.; Blackstone, T.; Diao, Y.; Hinson, K.; Karadayi, E.; Saito, M., Sampling large random knots in a confined space, J. Phys. A: Math. Theor., 40, 11697-11711 (2007) · Zbl 1133.57004 · doi:10.1088/1751-8113/40/39/002
[3] Arsuaga, J.; Blackstone, T.; Diao, Y.; Karadayi, E.; Saito, M., Linking of uniform random polygons in confined spaces, J. Phys. A: Math. Theor., 40, 1925-1936 (2007) · Zbl 1123.57005 · doi:10.1088/1751-8113/40/9/001
[4] Arsuaga, J.; Diao, Y.; Vazquez, M.; Benham, C. J.; Harvey, S.; Olson, W. K.; Sumners, D. W.; Swigon, D., Mathematical methods in DNA topology: applications to chromosome organization and site-specific recombination, Mathematics of DNA Structure, Functions and Interactions, vol 40, 7-36 (2009), New York: Springer, New York
[5] Atapour, M.; Soteros, C. E.; Whittington, S. G., Stretched polygons in a lattice tube, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1179.82020 · doi:10.1088/1751-8113/42/32/322002
[6] Beaton, N. R.; Eng, J. W.; Soteros, C. E., Knotting statistics for polygons in lattice tubes, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.82131 · doi:10.1088/1751-8121/ab0981
[7] Chmutov, S.; Duzhin, S.; Mostovoy, J., Introduction to Vassiliev Knot Invariants (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1245.57003
[8] Clisby, N., Enumerative combinatorics of lattice polymers, Not. AMS, 68, 504-515 (2021) · Zbl 1476.82002 · doi:10.1090/noti2255
[9] Coronel, L.; Orlandini, E.; Micheletti, C., Non-monotonic knotting probability and knot length of semiflexible rings: the competing roles of entropy and bending energy, Soft Matter, 13, 4260-4267 (2017) · doi:10.1039/c7sm00643h
[10] Deguchi, T.; Tsurusaki, K., A statistical study of random knotting using the Vassiliev invariants, J. Knot Theory Its Ramifications, 03, 321-353 (1994) · Zbl 0841.57010 · doi:10.1142/s0218216594000241
[11] Deguchi, T.; Tsurusaki, K., Universality of random knotting, Phys. Rev. E, 55, 6245 (1997) · doi:10.1103/physreve.55.6245
[12] Diao, Y., The knotting of equilateral polygons in r^3, J. Knot Theory Its Ramifications, 04, 189-196 (1995) · Zbl 0846.57004 · doi:10.1142/s0218216595000090
[13] Diao, Y.; Dobay, A.; Stasiak, A., The average inter-crossing number of equilateral random walks and polygons, J. Phys. A: Math. Gen., 38, 7601-7616 (2005) · Zbl 1100.82009 · doi:10.1088/0305-4470/38/35/001
[14] Diao, Y.; Ernst, C.; Ziegler, U.; Rawdon, E. J.; Blatt, S.; Reiter, P.; Schikorra, A., The knot spectrum of random knot spaces, New Directions in Geometric and Applied Knot Theory, 205-237 (2017), Poland: De Gruyter, Poland · Zbl 1420.57019
[15] Diao, Y.; Dobay, A.; Kusner, R. B.; Millett, K.; Stasiak, A., The average crossing number of equilateral random polygons, J. Phys. A: Math. Gen., 36, 11561-11574 (2003) · Zbl 1052.57006 · doi:10.1088/0305-4470/36/46/002
[16] Diao, Y.; Pippenger, N.; Sumners, D. W., On random knots, J. Knot Theory Its Ramifications, 3, 419-429 (1993) · Zbl 0846.57003 · doi:10.1142/s0218216594000307
[17] Dobay, A.; Dubochet, J.; Millett, K. C.; Sottas, P.; Stasiak, A., Scaling behavior of random knots, Proc. Natl Acad. Sci., 100, 5611-5615 (2003) · Zbl 1063.82013 · doi:10.1073/pnas.0330884100
[18] Grosberg, A. Y.; Nechaev, S. K.; Shakhnovich, E. I., The role of topological constraints in the kinetics of collapse of macromolecules, J. Physique, 49, 2095-2100 (1998) · doi:10.1051/jphys:0198800490120209500
[19] Halverson, J. D.; Smrek, J.; Kremer, K.; Grosberg, A. Y., From a melt of rings to chromosome territories: the role of topological constraints in genome folding, Rep. Prog. Phys., 77 (2014) · doi:10.1088/0034-4885/77/2/022601
[20] Hammersley, J. M., The number of polygons on a lattice, Math. Proc. Camb. Phil. Soc., 57, 516-523 (1961) · Zbl 0122.36501 · doi:10.1017/s030500410003557x
[21] Marenduzo, D.; Orlandini, E.; Stasiak, A.; Sumners, D. W.; Tubiana, L.; Micheletti, C., DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting, Proc. Natl Acad. Sci., 106, 22269-22274 (2009) · doi:10.1073/pnas.0907524106
[22] Micheletti, C.; Marenduzzo, D.; Orlandini, E., Polymers with spatial or topological constraints: theoretical and computational results, Phys. Rep., 504, 1-73 (2011) · Zbl 1211.82070 · doi:10.1016/j.physrep.2011.03.003
[23] Micheletti, C.; Marenduzzo, D.; Orlandini, E.; Summers, D. W., Knotting of random ring polymers in confined spaces, J. Chem. Phys., 124 (2006) · doi:10.1063/1.2162886
[24] Millett, K.; Dobay, A.; Stasiak, A., Linear random knots and their scaling behavior, Macromolecules, 38, 601-606 (2005) · doi:10.1021/ma048779a
[25] Orlandini, E.; Whittington, S. G., Entangled polymers in condensed phases, J. Chem. Phys., 121, 12094-12099 (2004) · doi:10.1063/1.1814077
[26] Orlandini, E.; van Rensburg, E. J J.; Tesi, M. C.; Whittington, S. G., Random linking of lattice polygons, J. Phys. A: Math. Gen., 27, 335-345 (1994) · Zbl 0820.60100 · doi:10.1088/0305-4470/27/2/018
[27] Orlandini, E.; Tesi, M. C.; Whittington, S. G.; Sumners, D. W.; van Rensburg, E. J J., The writhe of a self-avoiding walk, J. Phys. A: Math. Gen., 27, L333-L338 (1994) · Zbl 0827.60090 · doi:10.1088/0305-4470/27/10/006
[28] Panagiotou, E.; Kauffman, L. H., Knot polynomials of open and closed curves, Proc. R. Soc. A, 476, 20200124 (2020) · Zbl 1472.57011 · doi:10.1098/rspa.2020.0124
[29] Panagiotou, E.; Kauffman, L. H., Vassiliev measures of open and closed curves in 3-space, Proc. R. Soc. A, 477, 20210440 (2021) · doi:10.1098/rspa.2021.0440
[30] Panagiotou, E.; Millett, K. C.; Lambropoulou, S., The linking number and the writhe of uniform random walks and polygons in confined spaces, J. Phys. A: Math. Theor., 43 (2010) · Zbl 1187.82052 · doi:10.1088/1751-8113/43/4/045208
[31] Pippenger, N., Knots in random walks, Discrete Appl. Math., 25, 273-278 (1989) · Zbl 0681.57001 · doi:10.1016/0166-218x(89)90005-x
[32] Polyak, M.; Viro, O., On the Casson knot invariant, J. Knot Theory Its Ramifications, 10, 711-738 (2001) · Zbl 0997.57021 · doi:10.1142/s0218216501001116
[33] Portillo, J.; Diao, Y.; Scharein, R.; Arsuaga, J.; Vazquez, M., On the mean and variance of the writhe of random polygons, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1223.57011 · doi:10.1088/1751-8113/44/27/275004
[34] Colby, R. H.; Rubinstein, M., Polymer Physics (1998), Oxford: Oxford University Press, Oxford
[35] Shimamura, M. K.; Deguchi, T., Characteristic length of random knotting for cylindrical self-avoiding polygons, Phys. Lett. A, 274, 184-191 (2000) · Zbl 1065.60501 · doi:10.1016/s0375-9601(00)00545-4
[36] Sumners, D. W.; Whittington, S. G., Knots in self-avoiding walks, J. Phys. A: Math. Gen., 21, 1689-1694 (1988) · Zbl 0659.57003 · doi:10.1088/0305-4470/21/7/030
[37] van Rensburg, E. J J.; Orlandini, E.; Sumners, D. W.; Tesi, M. C.; Whittington, S. G., The writhe of a self-avoiding polygon, J. Phys. A: Math. Gen., 26, L981-L986 (1993) · Zbl 0804.60101 · doi:10.1088/0305-4470/26/19/002
[38] van Rensburg, E. J J.; Rechnitzer, A., On the universality of knot probability ratios, J. Phys. A: Math. Theor., 44 (2011) · Zbl 1216.82018 · doi:10.1088/1751-8113/44/16/162002
[39] Xiong, A.; Taylor, A. J.; Dennis, M. R.; Whittington, S. G., Knot probabilities in equilateral random polygons, J. Phys. A: Math. Theor., 54 (2021) · Zbl 1519.57013 · doi:10.1088/1751-8121/ac1fc2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.