×

Decay for strain gradient porous elastic waves. (English) Zbl 1505.74096

Summary: We study the one-dimensional problem for the linear strain gradient porous elasticity. Our aim is to analyze the behavior of the solutions with respect to the time variable when a dissipative structural mechanism is introduced in the system. We consider five different scenarios: hyperviscosity and viscosity for the displacement component and hyperviscoporosity, viscoporosity and weak viscoporosity for the porous component. We only apply one of these mechanisms at a time. We obtain the exponential decay of the solutions in the case of viscosity and a similar result for the viscoporosity. Nevertheless, in the hyperviscosity case (respectively hyperviscoporosity) the decay is slow and it can be controlled at least by \(t^{-1/2}\). Slow decay is also expected for the weak viscoporosity in the generic case, although a particular combination of the constitutive parameters leads to the exponential decay. We want to emphasize the fact that the hyperviscosity (respectively hyperviscoporosity) is a stronger dissipative mechanism than the viscosity (respectively viscoporosity); however, in this situation, the second mechanism seems to be more “efficient” than the first one in order to pull along the solutions rapidly to zero. This is a striking fact that we have not seen previously at any other linear coupling system. Finally, we also present some numerical simulations by using the finite element method and the Newmark-\(\beta\) scheme to show the behavior of the energy decay of the solutions to the above problems, including a comparison between the hyperviscosity and the viscosity cases.

MSC:

74J05 Linear waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74H40 Long-time behavior of solutions for dynamical problems in solid mechanics
74H20 Existence of solutions of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Apalara, TA, Exponential decay in one-dimensional porous dissipation elasticity, Q. J. Mech. Appl. Math., 70, 4, 363-372 (2017) · Zbl 1423.35033 · doi:10.1093/qjmam/hbx012
[2] Borichev, A.; Tomilov, Y., Optimal polynomial decay of fucntions and operators semigroups, Math. Annal., 347, 455-478 (2009) · Zbl 1185.47044 · doi:10.1007/s00208-009-0439-0
[3] Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems, Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, pp. 17-351 (1991) · Zbl 0875.65086
[4] Cowin, SC; Nunziato, JW, Linear elastic materials with voids, J. Elasticity, 13, 125-147 (1983) · Zbl 0523.73008 · doi:10.1007/BF00041230
[5] Cowin, SC, The viscoelastic behavior of linear elastic materials with voids, J. Elasticity, 15, 185-191 (1985) · Zbl 0564.73044 · doi:10.1007/BF00041992
[6] Dieudonné, M. J.: La Theorie Analytique des Polynomes d’une Variable (A Coefficients Quelconques), Gauthier-Villars, (1938) · Zbl 0021.41701
[7] Feng, B., Uniform decay of energy for a porous thermoelastic system with past history, Appl. Anal., 97, 210-229 (2018) · Zbl 1391.35050 · doi:10.1080/00036811.2016.1258116
[8] Feng, B., On the decay rates for a one-dimensional porous elasticity system with past history, Comm. Pure Appl. Anal., 18, 6, 2905-2921 (2019) · Zbl 1480.35035 · doi:10.3934/cpaa.2019130
[9] Feng, B.; Apalara, TA, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl., 470, 1108-1128 (2019) · Zbl 1451.74076 · doi:10.1016/j.jmaa.2018.10.052
[10] Feng, B.; Yin, M., Decay of solutions for one-dimensional porous elasticity system with memory: the case of non-equal waves speed, Math. Mech. Solids, 24, 2361-2373 (2019) · Zbl 07254358 · doi:10.1177/1081286518757299
[11] Huang, FL, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Annals Diff. Eqs., 1, 43-56 (1985) · Zbl 0593.34048
[12] Ieşan, D., Thermoelastic Models of Continua (2004), Berlin: Springer, Berlin · Zbl 1108.74004 · doi:10.1007/978-1-4020-2310-1
[13] Ieşan, D., A gradient theory of porous elastic solids, Z. Angew. Math. Mech. (ZAMM), 100, e201900241 (2020) · Zbl 07809734
[14] Green, AE; Rivlin, RS, Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17, 113-147 (1964) · Zbl 0133.17604 · doi:10.1007/BF00253051
[15] Leseduarte, MC; Magaña, A.; Quintanilla, R., On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Cont. Dyn. Syst. - Ser. B, 13, 2, 375-391 (2010) · Zbl 1197.35053
[16] Liu, Z.; Zheng, S., Semigroups Associated with Dissipative Systems (1999), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 0924.73003
[17] Liu, Z.; Magaña, A.; Quintanilla, R., On the time decay of solutions for non-simple elasticity with voids, Z. Angew. Math. Mech. (ZAMM), 96, 7, 857-873 (2016) · Zbl 07775072 · doi:10.1002/zamm.201400290
[18] Magaña, A.; Quintanilla, R., On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. Solids Struct., 43, 3414-3427 (2006) · Zbl 1121.74361 · doi:10.1016/j.ijsolstr.2005.06.077
[19] Magaña, A.; Quintanilla, R., On the time decay of solutions in porous elasticity with quasi-static microvoids, J. Math. Anal. Appl., 331, 1, 617-630 (2007) · Zbl 1114.35024 · doi:10.1016/j.jmaa.2006.08.086
[20] Magaña, A.; Quintanilla, R., Exponential stability in type III thermoelasticity with microtemperatures, Z. Ang. Math. Phys. (ZAMP), 69, 129-1-129-8 (2018) · Zbl 1401.74075
[21] Magaña, A.; Miranville, A.; Quintanilla, R., Exponential decay of solutions in type II porous-thermo-elasticity with quasi-static microvoids, J. Math. Anal. Appl., 492 (2020) · Zbl 1453.35167 · doi:10.1016/j.jmaa.2020.124504
[22] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[23] Miranville, A.; Quintanilla, R., Exponential stability in type III thermoelasticity with voids, Appl. Math. Lett., 94, 30-37 (2019) · Zbl 1415.35259 · doi:10.1016/j.aml.2019.02.014
[24] Miranville, A.; Quintanilla, R., Exponential decay in one-dimensional type II thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020) · Zbl 1439.35071 · doi:10.1016/j.cam.2019.112573
[25] Muñoz Rivera, JE; Quintanilla, R., On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338, 1296-1309 (2008) · Zbl 1131.74019 · doi:10.1016/j.jmaa.2007.06.005
[26] Nunziato, JW; Cowin, SC, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72, 175-201 (1979) · Zbl 0444.73018 · doi:10.1007/BF00249363
[27] Pamplona, PX; Muñoz Rivera, JE; Quintanilla, R., Stabilization in elastic solids with voids, J. Math. Anal. Appl., 350, 37-49 (2009) · Zbl 1153.74016 · doi:10.1016/j.jmaa.2008.09.026
[28] Pamplona, PX; Muñoz Rivera, JE; Quintanilla, R., On the decay of solutions for porous-elastic systems with history, J. Math. Anal. Appl., 379, 682-705 (2011) · Zbl 1259.35136 · doi:10.1016/j.jmaa.2011.01.045
[29] Prüss, J., On the spectrum of \(C_0\)-semigroups, Trans. Am. Math. Soc., 284, 847-857 (1984) · Zbl 0572.47030
[30] Quintanilla, R., Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett., 16, 487-491 (2003) · Zbl 1040.74023 · doi:10.1016/S0893-9659(03)00025-9
[31] Toupin, RA, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., 17, 85-112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.