×

On the decay rates for a one-dimensional porous elasticity system with past history. (English) Zbl 1480.35035

Summary: This paper studies a porous elasticity system with past history \[ \begin{cases} \rho u_{tt}-\mu u_{xx}-b \phi_x = 0 \\ J \phi_{tt}-\delta \phi_{xx}+b u_x+\xi \phi+\int_0^{\infty} g(s) \phi_{xx} (t-s) ds = 0 \end{cases} \] By introducing a new variable, we establish an explicit and a general decay of energy for the case of equal-speed wave propagation as well as for the nonequal-speed case. To establish our results, we mainly adopt the method developed by A. Guesmia et al. [Electron. J. Differ. Equ. 2012, Paper No. 193, 45 p. (2012; Zbl 1295.35088)] and some properties of convex functions developed by F. Alabau-Boussouira and P. Cannarsa [C. R., Math., Acad. Sci. Paris 347, No. 15–16, 867–872 (2009; Zbl 1179.35058)], I. Lasiecka and D. Tataru [Differ. Integral Equ. 6, No. 3, 507–533 (1993; Zbl 0803.35088)]. In addition we remove the assumption that \(b\) is positive constant in [T. A. Apalara, J. Math. Anal. Appl. 469, No. 2, 457–471 (2019; Zbl 1402.35042)] and hence improve the result.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L53 Initial-boundary value problems for second-order hyperbolic systems
35R09 Integro-partial differential equations
35Q74 PDEs in connection with mechanics of deformable solids
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] F. Alabau-Boussouira; P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Acad. Sci. Paris Ser. I, 347, 867-872 (2009) · Zbl 1179.35058 · doi:10.1016/j.crma.2009.05.011
[2] T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469, 457-471 (2019) · Zbl 1402.35042 · doi:10.1016/j.jmaa.2017.08.007
[3] T. A. Apalara, Exponential decay in one-dimensional porous dissipation elasticity, Quart. J. Mech. Appl. Math., 70, 363-372 (2017) · Zbl 1423.35033 · doi:10.1093/qjmam/hbx012
[4] T. A. Apalara, A general decay for a weakly nonlinearly damped porous system, J. Dyn. Contr. Sys., (2018). · Zbl 1415.35257
[5] P. S. Casas; R. Quintanilla, Exponential decay in one-dimensional porous-thermo-elasticity, Mech. Res. Comm., 32, 652-658 (2005) · Zbl 1192.74156 · doi:10.1016/j.mechrescom.2005.02.015
[6] P. S. Casas; R. Quintanilla, Exponential stability in thermoelasticity with microtemperatures, Int. J. Engrg. Sci., 43, 33-47 (2005) · Zbl 1211.74060 · doi:10.1016/j.ijengsci.2004.09.004
[7] S. C. Cowin, The viscoelsstic behavior of linear elastic materials with voids, J. Elasticity, 15, 185-191 (1985) · Zbl 0564.73044
[8] S. C. Cowin; J. W. Nunsiato, Linear elastic materials with voids, J. Elasticity, 13, 125-147 (1983) · Zbl 0523.73008
[9] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37, 297-308 (1970) · Zbl 0214.24503 · doi:10.1007/BF00251609
[10] B. Feng, Uniform decay of energy for a porous thermoelasticity system with past history, Appl. Anal., 97, 210-229 (2018) · Zbl 1391.35050 · doi:10.1080/00036811.2016.1258116
[11] B. Feng and M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds, Math. Mech. Solids, (2018). · Zbl 07254358
[12] M. M. Freitas; M. L. Santos; J. A. Langa, Porous elastic system with nonlinear damping and sources terms, J. Differ. Equ., 264, 2970-3051 (2018) · Zbl 1394.35043 · doi:10.1016/j.jde.2017.11.006
[13] A. Guesmia, Asymototic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382, 748-760 (2011) · Zbl 1225.45005 · doi:10.1016/j.jmaa.2011.04.079
[14] A. Guesmia; S. A. Messaoudi; A. Soufyane, Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems, Electron. J. Differ. Equ., 2012, 1-45 (2012) · Zbl 1295.35088
[15] D. Ieşan, A theories of thermoelastic materials with voids, Acta Mechanica, 60, 67-89 (1986) · Zbl 0597.73007
[16] D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht, 2004. · Zbl 1108.74004
[17] I. Lasiecka; D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differ. Integral Equ., 6, 507-533 (1993) · Zbl 0803.35088
[18] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC, Boca Raton, 1999. · Zbl 0924.73003
[19] A. Magaña; R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Int. Solids Structures, 43, 3414-3427 (2006) · Zbl 1121.74361 · doi:10.1016/j.ijsolstr.2005.06.077
[20] S. A. Messaoudi; A. Fareh, General decay for a porous thermoelastic system with memory: the case of equal speeds, Nonlinear Anal., 74, 6895-6906 (2011) · Zbl 1228.35055 · doi:10.1016/j.na.2011.07.012
[21] S. A. Messaoudi; A. Fareh, General decay for a porous thermoelastic system with memory: the case of nonequal speeds, Acta Math. Sci., 33B, 1-19 (2013) · Zbl 1289.35215 · doi:10.1016/S0252-9602(12)60192-1
[22] J. E. Muñoz Rivera; H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339, 482-502 (2008) · Zbl 1132.45008 · doi:10.1016/j.jmaa.2007.07.012
[23] J. E. Muñoz Rivera; R. Quintanilla, On the time polynomial decay in elastic solids with viods, J. Math. Anal. Appl., 338, 1296-1309 (2008) · Zbl 1131.74019 · doi:10.1016/j.jmaa.2007.06.005
[24] W. Nunziato; S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72, 175-201 (1979) · Zbl 0444.73018 · doi:10.1007/BF00249363
[25] P. X. Pamplona; J. E. Muñoz Rivera; R. Quintanilla, Stabilization in elastic solids with voids, J. Math. Anal. Appl., 1, 37-49 (2009) · Zbl 1153.74016 · doi:10.1016/j.jmaa.2008.09.026
[26] P. X. Pamplona; J. E. Muñoz Rivera; R. Quintanilla, On the decay of solutions for porous-elastic system with history, J. Math. Anal. Appl., 379, 682-705 (2011) · Zbl 1259.35136 · doi:10.1016/j.jmaa.2011.01.045
[27] V. Pata; A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11, 505-529 (2001) · Zbl 0999.35014
[28] R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett., 16, 487-491 (2003) · Zbl 1040.74023 · doi:10.1016/S0893-9659(03)00025-9
[29] M. L. Santos; D. S. Almeida Júnior, On porous-elastic system with localized damping, Z. Angew. Math. Phys., 67, 1-18 (2016) · Zbl 1351.35217 · doi:10.1007/s00033-016-0622-6
[30] M. L. Santos; D. S. Almeida Júnior, On the porous-elastic system with Kelvin-Voigt damping, J. Math. Anal. Appl., 445, 498-512 (2017) · Zbl 1386.74051 · doi:10.1016/j.jmaa.2016.08.005
[31] M. L. Santos; A. D. S. Campelo; D. S. Almeida Júnior, On the decay rates of porous elastic systems, J. Elasticity, 127, 79-101 (2017) · Zbl 1366.35188 · doi:10.1007/s10659-016-9597-y
[32] M. L. Santos; A. D. S. Campelo; D. S. Almeida Júnior, Rates of decay for porous elastic system weakly dissipative, Acta Appl. Math., 151, 1-26 (2017) · Zbl 1398.35233 · doi:10.1007/s10440-017-0100-y
[33] M. L. Santos; A. D. S. Campelo; M. L. S. Oliveira, On porous-elastic systems with Fourier law, Appl. Anal., 1-17 (2018) · Zbl 1409.35195 · doi:10.1080/00036811.2017.1419197
[34] A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal., 87, 451-464 (2008) · Zbl 1135.74301 · doi:10.1080/00036810802035634
[35] A. Soufyane, M. Afilal and M. Chacha, Boundary stabilization of memory type for the porous-thermoelasticity system, Abstr. Appl. Anal., 2009 (2009), ID 280790. · Zbl 1165.74015
[36] A. Soufyane; M. Afilal; T. Aouam; M. Chacha, General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type, Nonlinear Anal., 72, 3903-3910 (2010) · Zbl 1187.74052 · doi:10.1016/j.na.2010.01.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.