×

Universality in anisotropic linear anelasticity. (English) Zbl 1505.74014

Summary: In linear elasticity, universal displacements for a given symmetry class are those displacements that can be maintained by only applying boundary tractions (no body forces) and for arbitrary elastic constants in the symmetry class. In a previous work [the authors et al., J. Mech. Phys. Solids 135, Article ID 103782, 12 p. (2020; Zbl 1484.74006)], we showed that the larger the symmetry group, the larger the space of universal displacements. Here, we generalize these ideas to the case of anelasticity. In linear anelasticity, the total strain is additively decomposed into elastic strain and anelastic strain, often referred to as an eigenstrain. We show that the universality constraints (equilibrium equations and arbitrariness of the elastic constants) completely specify the universal elastic strains for each of the eight anisotropy symmetry classes. The corresponding universal eigenstrains are the set of solutions to a system of second-order linear PDEs that ensure compatibility of the total strains. We show that for three symmetry classes, namely triclinic, monoclinic, and trigonal, only compatible (impotent) eigenstrains are universal. For the remaining five classes universal eigenstrains (up to the impotent ones) are the set of solutions to a system of linear second-order PDEs with certain arbitrary forcing terms that depend on the symmetry class.

MSC:

74B05 Classical linear elasticity
74E10 Anisotropy in solid mechanics

Citations:

Zbl 1484.74006

References:

[1] Ambrosi, D.; Ben Amar, M.; Cyron, C. J.; DeSimone, A.; Goriely, A.; Humphrey, J. D.; Kuhl, E., Growth and remodelling of living tissues: perspectives, challenges and opportunities, J. R. Soc. Interface, 16, 157 (2019) · doi:10.1098/rsif.2019.0233
[2] Beltrami, E., Osservazioni sulla nota precedente, Atti R. Accad. Lincei, Rend., 1, 5, 141-142 (1892) · JFM 24.0941.02
[3] Chadwick, P.; Vianello, M.; Cowin, S. C., A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids, 49, 11, 2471-2492 (2001) · Zbl 1017.74009 · doi:10.1016/S0022-5096(01)00064-3
[4] Cowin, S. C.; Doty, S. B., Tissue Mechanics (2007), Berlin: Springer, Berlin · Zbl 1117.74002 · doi:10.1007/978-0-387-49985-7
[5] Cowin, S. C.; Mehrabadi, M. M., Anisotropic symmetries of linear elasticity, Appl. Mech. Rev., 48, 5, 247-285 (1995) · Zbl 0868.73008 · doi:10.1115/1.3005102
[6] Diani, J. L.; Parks, D., Problem of an inclusion in an infinite body, approach in large deformation, Mech. Mater., 32, 1, 43-55 (2000) · doi:10.1016/S0167-6636(99)00015-0
[7] Eckart, C., The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity, Phys. Rev., 73, 4, 373 (1948) · Zbl 0032.22201 · doi:10.1103/PhysRev.73.373
[8] Ericksen, J. L., Deformations possible in every isotropic, incompressible, perfectly elastic body, Z. Angew. Math. Phys., 5, 6, 466-489 (1954) · Zbl 0059.17509 · doi:10.1007/BF01601214
[9] Ericksen, J. L., Deformations possible in every compressible, isotropic, perfectly elastic material, J. Math. Phys., 34, 1-4, 126-128 (1955) · Zbl 0064.42105 · doi:10.1002/sapm1955341126
[10] Ericksen, J. L.; Rivlin, R. S., Large elastic deformations of homogeneous anisotropic materials, J. Ration. Mech. Anal., 3, 281-301 (1954) · Zbl 0055.18103
[11] Eshelby, J., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A, 241, 1226, 376-396 (1957) · Zbl 0079.39606
[12] Fosdick, R.L.: Remarks on Compatibility. Modern Developments in the Mechanics of Continua, 109-127 (1966)
[13] Golgoon, A.; Yavari, A., On the stress field of a nonlinear elastic solid torus with a toroidal inclusion, J. Elast., 128, 1, 115-145 (2017) · Zbl 1373.74018 · doi:10.1007/s10659-016-9620-3
[14] Golgoon, A.; Yavari, A., Nonlinear elastic inclusions in anisotropic solids, J. Elast., 130, 2, 239-269 (2018) · Zbl 1455.74016 · doi:10.1007/s10659-017-9639-0
[15] Golgoon, A.; Yavari, A., On Hashin’s hollow cylinder and sphere assemblages in anisotropic nonlinear elasticity, J. Elast., 146, 1, 65-82 (2021) · Zbl 1486.74117 · doi:10.1007/s10659-021-09856-2
[16] Golgoon, A.; Sadik, S.; Yavari, A., Circumferentially-symmetric finite eigenstrains in incompressible isotropic nonlinear elastic wedges, Int. J. Non-Linear Mech., 84, 116-129 (2016) · doi:10.1016/j.ijnonlinmec.2016.04.007
[17] Goodbrake, C.; Yavari, A., The mathematical foundations of anelasticity: Existence of smooth global intermediate configurations, Proceedings of the Royal Society A, 477, 2245, 20200462 (2021) · doi:10.1098/rspa.2020.0462
[18] Goodbrake, C.; Yavari, A.; Goriely, A., The anelastic Ericksen problem: Universal deformations and universal eigenstrains in incompressible nonlinear anelasticity, J. Elast., 142, 2, 291-381 (2020) · Zbl 1459.74021 · doi:10.1007/s10659-020-09797-2
[19] Gurtin, M. E., A generalization of the Beltrami stress functions in continuum mechanics, Archive for Rational Mechanics and Analysis, 13, 321-329 (1963) · Zbl 0203.26802 · doi:10.1007/BF01262700
[20] Gurtin, M. E., The linear theory of elasticity, Handbuch der Physik, Band VIa/2 (1972), Berlin: Springer, Berlin
[21] Jun, T.-S.; Korsunsky, A. M., Evaluation of residual stresses and strains using the eigenstrain reconstruction method, Int. J. Solids Struct., 47, 13, 1678-1686 (2010) · Zbl 1194.74169 · doi:10.1016/j.ijsolstr.2010.03.002
[22] Kim, C.; Schiavone, P., A circular inhomogeneity subjected to non-uniform remote loading in finite plane elastostatics, Int. J. Non-Linear Mech., 42, 8, 989-999 (2007) · doi:10.1016/j.ijnonlinmec.2007.05.001
[23] Kim, C.; Schiavone, P., Designing an inhomogeneity with uniform interior stress in finite plane elastostatics, Acta Mech., 197, 3-4, 285-299 (2008) · Zbl 1151.74327 · doi:10.1007/s00707-007-0510-4
[24] Kim, C.; Vasudevan, M.; Schiavone, P., Eshelby’s conjecture in finite plane elastostatics, Q. J. Mech. Appl. Math., 61, 1, 63-73 (2008) · Zbl 1132.74007 · doi:10.1093/qjmam/hbm024
[25] Kinoshita, N.; Mura, T., Elastic fields of inclusions in anisotropic media, Phys. Status Solidi A, 5, 3, 759-768 (1971) · doi:10.1002/pssa.2210050332
[26] Klingbeil, W. W.; Shield, R. T., On a class of solutions in plane finite elasticity, Z. Angew. Math. Phys., 17, 4, 489-511 (1966) · doi:10.1007/BF01595984
[27] Kondo, K., A proposal of a new theory concerning the yielding of materials based on Riemannian geometry, J. Jpn. Soc. Aeronaut. Eng., 2, 8, 29-31 (1949)
[28] Li, S.; Sauer, R. A.; Wang, G., The Eshelby tensors in a finite spherical domain—part I: Theoretical formulations, Journal of Applied Mechanics, 74, 4, 770-783 (2007) · doi:10.1115/1.2711227
[29] Mindlin, R. D.; Cheng, D. H., Nuclei of strain in the semi-infinite solid, J. Appl. Phys., 21, 9, 926-930 (1950) · Zbl 0038.37204 · doi:10.1063/1.1699785
[30] Mura, T., Micromechanics of Defects in Solids (1982), Hague/Boston/London: Martinus Nijhoff, Hague/Boston/London · doi:10.1007/978-94-011-9306-1
[31] Reissner, H., Eigenspannungen und eigenspannungsquellen, Z. Angew. Math. Mech., 11, 1, 1-8 (1931) · JFM 57.1040.01 · doi:10.1002/zamm.19310110101
[32] Rivlin, R. S., Large elastic deformations of isotropic materials IV. Further developments of the general theory, Philos. Trans. R. Soc. Lond. A, 241, 835, 379-397 (1948) · Zbl 0031.42602 · doi:10.1098/rsta.1948.0024
[33] Rivlin, R. S., Large elastic deformations of isotropic materials. V. The problem of flexure, Proc. R. Soc. Lond. A, 195, 1043, 463-473 (1949) · Zbl 0036.24901 · doi:10.1098/rspa.1949.0004
[34] Rivlin, R. S., A note on the torsion of an incompressible highly elastic cylinder, Mathematical Proceedings of the Cambridge Philosophical Society, 485-487 (1949), Cambridge: Cambridge University Press, Cambridge · Zbl 0033.40802
[35] Ru, C.; Schiavone, P.; Sudak, L.; Mioduchowski, A., Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics, Int. J. Non-Linear Mech., 40, 2, 281-287 (2005) · Zbl 1349.74061 · doi:10.1016/j.ijnonlinmec.2004.06.002
[36] Ru, C.-Q.; Schiavone, P., On the elliptic inclusion in anti-plane shear, Math. Mech. Solids, 1, 3, 327-333 (1996) · Zbl 1001.74509 · doi:10.1177/108128659600100304
[37] Sadik, S.; Yavari, A., On the origins of the idea of the multiplicative decomposition of the deformation gradient, Math. Mech. Solids, 22, 771-772 (2017) · Zbl 1371.74002 · doi:10.1177/1081286515612280
[38] Singh, M.; Pipkin, A. C., Note on Ericksen’s problem, Z. Angew. Math. Phys., 16, 5, 706-709 (1965) · doi:10.1007/BF01590971
[39] Sozio, F.; Yavari, A., Riemannian and Euclidean material structures in anelasticity, Math. Mech. Solids, 25, 6, 1267-1293 (2020) · Zbl 1482.74009 · doi:10.1177/1081286519884719
[40] Ting, T. C.T., Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight, Int. J. Solids Struct., 40, 25, 7129-7142 (2003) · Zbl 1073.74011 · doi:10.1016/S0020-7683(03)00358-5
[41] Truesdell, C., The Elements of Continuum Mechanics (1966), Berlin: Springer, Berlin · Zbl 0188.58803
[42] Ueda, Y.; Fukuda, K.; Nakacho, K.; Endo, S., A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values, Trans. JWRI, 4, 2, 123-131 (1975) · doi:10.1007/BF00164683
[43] Yavari, A., Compatibility equations of nonlinear elasticity for non-simply-connected bodies, Arch. Ration. Mech. Anal., 209, 1, 237-253 (2013) · Zbl 1286.35235 · doi:10.1007/s00205-013-0621-0
[44] Yavari, A., Universal deformations in inhomogeneous isotropic nonlinear elastic solids, Proc. R. Soc. A, 477, 2253 (2021) · doi:10.1098/rspa.2021.0547
[45] Yavari, A., On Eshelby’s inclusion problem in nonlinear anisotropic elasticity, J. Micromech. Mol. Phys., 6, 1 (2021) · doi:10.1142/S2424913021500028
[46] Yavari, A.; Goriely, A., On the stress singularities generated by anisotropic eigenstrains and the hydrostatic stress due to annular inhomogeneities, J. Mech. Phys. Solids, 76, 325-337 (2015) · Zbl 1349.74154 · doi:10.1016/j.jmps.2014.12.005
[47] Yavari, A.; Goriely, A., The twist-fit problem: finite torsional and shear eigenstrains in nonlinear elastic solids, Proc. R. Soc. Lond. A, 471, 2183 (2015)
[48] Yavari, A.; Goriely, A., The anelastic Ericksen problem: Universal eigenstrains and deformations in compressible isotropic elastic solids, Proc. R. Soc. A, 472, 2196 (2016) · Zbl 1371.74048 · doi:10.1098/rspa.2016.0690
[49] Yavari, A.; Goriely, A., Universal deformations in anisotropic nonlinear elastic solids, J. Mech. Phys. Solids, 156 (2021) · doi:10.1016/j.jmps.2021.104598
[50] Yavari, A.; Goriely, A., The universal program of nonlinear hyperelasticity, J. Elast. (2022) · Zbl 1528.74015 · doi:10.1007/s10659-022-09906-3
[51] Yavari, A., Goriely, A.: The universal program of linear elasticity. Mathematics and Mechanics of Solids, 1-18 (2022). doi:10.1177/10812865221091305
[52] Yavari, A.; Goodbrake, C.; Goriely, A., Universal displacements in linear elasticity, J. Mech. Phys. Solids, 135 (2020) · Zbl 1484.74006 · doi:10.1016/j.jmps.2019.103782
[53] Zhou, K.; Hoh, H. J.; Wang, X.; Keer, L. M.; Pang, J. H.; Song, B.; Wang, Q. J., A review of recent works on inclusions, Mech. Mater., 60, 144-158 (2013) · doi:10.1016/j.mechmat.2013.01.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.