×

The \(L_p\) John ellipsoids for general measures. (English) Zbl 1505.52004

The classical John ellipsoid of a convex body \(K\subset{\mathbb R}^n\) is the (unique) ellipsoid of maximal volume that is contained in \(K\). E. Lutwak et al. [Proc. Lond. Math. Soc. (3) 90, No. 2, 497–520 (2005; Zbl 1074.52005)] have introduced the \(L_p\) John ellipsoids for \(0<p\le\infty\), considering only convex bodies containing the origin in the interior, admitting only origin-symmetric ellipsoids, and replacing the condition \(E\subseteq K\) by the condition that some integral, defined via the \(L_p\) Brunn-Minkowski theory and depending on \(E\) and \(K\), is at most \(1\). This is here further generalized. Let \(\mu\) be a Borel measure on \({\mathbb R}^n\) having a density \(g\) (with respect to Lebesgue measure) that is continuous on the support of \(\mu\). For \(p>0\) and a convex body \(K\) containing the origin in the interior, Problem \(M_{\mu,p}\) then asks to maximize the volume of the origin-symmetric ellipsoids \(E\) under the side condition that a certain integral, coming from the \(L_p\) Brunn-Minkowski theory and involving \(E\), \(K\) and \(g\), is at most \(1\). This problem is solved in the present paper, and it is shown that the maximizing ellipsoid has properties generalizing those of the \(L_p\) John ellipsoids. Special attention is paid to the Gaussian measure.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A40 Inequalities and extremum problems involving convexity in convex geometry

Citations:

Zbl 1074.52005
Full Text: DOI

References:

[1] Alonso-Gutiérrez, D.; Hernández Cifre, MA; Roysdon, M.; Yepes Nicolás, J.; Zvavitch, A., On Rogers-Shephard type inequalities for general measures, Int. Math. Res. Not., 10, 7224-7261 (2021) · Zbl 1481.52007 · doi:10.1093/imrn/rnz010
[2] Ball, K., Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc., 44, 351-359 (1991) · Zbl 0694.46010 · doi:10.1112/jlms/s2-44.2.351
[3] Barthe, F., An extremal property of the mean width of the simplex, Math. Ann., 310, 685-693 (1998) · Zbl 0901.52013 · doi:10.1007/s002080050166
[4] Bastero, J.; Romance, M., Positions of convex bodies associated to extremal problems and isotropic measures, Adv. Math., 184, 64-88 (2004) · Zbl 1053.52011 · doi:10.1016/S0001-8708(03)00095-1
[5] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., The log-Brunn-Minkowski inequality, Adv. Math., 231, 1974-1997 (2012) · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015
[6] Firey, WJ, p-means of convex bodies, Math. Scand., 10, 17-24 (1962) · Zbl 0188.27303 · doi:10.7146/math.scand.a-10510
[7] Gardner, RJ, Geometric Tomography (2006), New York: Cambridge University Press, New York · Zbl 1102.52002 · doi:10.1017/CBO9781107341029
[8] Gardner, RJ; Hug, D.; Weil, W.; Xing, S.; Ye, D., General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I, Calc. Var. Partial Differ. Equ., 58, 12, 35 (2019) · Zbl 1404.52004
[9] Giannopoulos, A.; Milman, VD, Extremal problems and isotropic positions of convex bodies, Israel J. Math., 117, 29-60 (2000) · Zbl 0964.52004 · doi:10.1007/BF02773562
[10] Giannopoulos, A., Milman, V.D., Rudelson, M.: Convex bodies with minimal mean width. Geometric aspects of functional analysis, 81-93, Lecture Notes in Math., 1745, Springer, Berlin, (2000) · Zbl 0978.52001
[11] Giannopoulos, A.; Papadimitrakis, M., Isotropic surface area measures, Mathematika, 46, 1-13 (1999) · Zbl 0960.52009 · doi:10.1112/S0025579300007518
[12] Hosle, J., On the comparison of measures of convex bodies via projections and sections, Int. Math. Res. Not., 17, 13046-13074 (2021) · Zbl 1486.52020 · doi:10.1093/imrn/rnz215
[13] Hosle, J.: On extensions of the Loomis-Whitney inequality and Ball’s inequality for concave, homogeneous measures. Adv. Appl. Math. 116, 102005, 12 pp (2020) · Zbl 1477.52015
[14] Hosle, J.; Kolesnikov, AV; Livshyts, G., On the Lp-Brunn-Minkowski and dimensional Brunn-Minkowski conjectures for log-concave measures, J. Geom. Anal., 31, 5799-5836 (2021) · Zbl 1469.52008 · doi:10.1007/s12220-020-00505-z
[15] Hu, J.; Xiong, G., The logarithmic John ellipsoid, Geom. Dedicata., 197, 33-48 (2018) · Zbl 1403.52008 · doi:10.1007/s10711-017-0316-z
[16] Hu, J.; Xiong, G.; Zou, D., On mixed \(L_p\) John ellipsoids, Adv. Geom., 19, 297-312 (2019) · Zbl 1433.52008 · doi:10.1515/advgeom-2018-0033
[17] Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G., Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216, 325-388 (2016) · Zbl 1372.52007 · doi:10.1007/s11511-016-0140-6
[18] Huang, Y.; Xi, D.; Zhao, Y., The Minkowski problem in Gaussian probability space, Adv. Math., 385, 107769, 36 (2021) · Zbl 1466.52010
[19] John, F.: Extremum problems with inequalities as subsidiary conditions, in: Studies and Essays Presented to R. Courant on His 60th Birthday, Interscience Publishers, Inc., New York, pp. 187-204 (1948) · Zbl 0034.10503
[20] Klartag, B.: On John-type ellipsoids, In: V.D. Milman, G. Schechtman (Eds.), Geometric Aspects of Functional Analysis, Lecture Notes in Math. Springer, Berlin, 1850, 149-158 (2004) · Zbl 1067.52004
[21] Langharst, D., Roysdon, M., Zvavitch, A.: General measure extensions of projection bodies, Proc. London Math. Soc. 125, 1083-1129 (2022) · Zbl 07740413
[22] Lewis, DR, Ellipsoids defined by Banach ideal norms, Mathematika, 26, 18-29 (1979) · Zbl 0438.46006 · doi:10.1112/S0025579300009566
[23] Li, X.; Wang, H.; Zhou, J., On \((p, q)\)-John ellipsoids(Chinese), Sci. Sin. Math., 50, 1-23 (2020)
[24] Liu, J., The \(L_p\)-Gaussian Minkowski problem, Calc. Var. Partial Differ. Equ., 61, 23 (2022) · Zbl 1480.52006 · doi:10.1007/s00526-021-02141-z
[25] Livshyts, G., An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math., 356, 106803, 40 (2019) · Zbl 1429.52004
[26] Livshyts, G.; Marsiglietti, A.; Nayar, P.; Zvavitch, A., On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Amer. Math. Soc., 369, 8725-8742 (2017) · Zbl 1376.52014 · doi:10.1090/tran/6928
[27] Lutwak, E., The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski Problem, J. Differential Geom., 38, 131-150 (1993) · Zbl 0788.52007 · doi:10.4310/jdg/1214454097
[28] Lutwak, E.; Yang, D.; Zhang, G., A new ellipsoid associated with convex bodies, Duke Math. J., 104, 375-390 (2000) · Zbl 0974.52008 · doi:10.1215/S0012-7094-00-10432-2
[29] Lutwak, E.; Yang, D.; Zhang, G., The Cramer-Rao inequality for star bodies, Duke Math. J., 112, 59-81 (2002) · Zbl 1021.52008 · doi:10.1215/S0012-9074-02-11212-5
[30] Lutwak, E.; Yang, D.; Zhang, G., \(L_p\) John ellipsoids, Proc. London Math. Soc., 90, 497-520 (2005) · Zbl 1074.52005 · doi:10.1112/S0024611504014996
[31] Lutwak, E.; Yang, D.; Zhang, G., \(L_p\) dual curvature measures, Adv. Math., 329, 85-132 (2018) · Zbl 1388.52003 · doi:10.1016/j.aim.2018.02.011
[32] Ma, T.; Wu, D.; Feng, Y., \((p, q)\)-John Ellipsoids, J. Geom. Anal., 31, 9597-9632 (2021) · Zbl 1477.52011 · doi:10.1007/s12220-021-00621-4
[33] Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geom. Aspects of Funct. Analysis (Lindenstrauss-Milman eds.), Lecture Notes in Math. 1376, 64-104 (1989) · Zbl 0679.46012
[34] Milman, E.; Rotem, L., Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math., 262, 867-908 (2014) · Zbl 1311.52008 · doi:10.1016/j.aim.2014.05.023
[35] Mou, S.; Zhu, B., The Orlicz-Minkowski problem for measure in \({\mathbb{R} }^n\) and Orlicz geominimal measures, Internat. J. Math., 30, 1950052, 26 (2019) · Zbl 1475.52006
[36] Petty, CM, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc., 12, 824-828 (1961) · Zbl 0101.40304 · doi:10.1090/S0002-9939-1961-0130618-0
[37] Roysdon, M.; Xing, S., On \(L_p\)-Brunn-Minkowski type and \(L_p\)-isoperimetric type inequalities for measures, Trans. Amer. Math. Soc., 374, 5003-5036 (2021) · Zbl 1465.52021 · doi:10.1090/tran/8356
[38] Schneider, R., Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 151 (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1287.52001
[39] Schuster, F.; Weberndorfer, M., Volume inequalities for asymmetric Wulff shapes, J. Differential Geom., 92, 263-283 (2012) · Zbl 1264.53010 · doi:10.4310/jdg/1352297808
[40] Wu, D., A generalization of \(L_p\)-Brunn-Minkowski inequalities and \(L_p\)-Minkowski problems for measures, Adv. Appl. Math., 89, 156-183 (2017) · Zbl 1369.52009 · doi:10.1016/j.aam.2017.05.001
[41] Wu, D., Firey-Shephard problems for homogeneous measures, J. Math. Anal. Appl., 458, 43-57 (2018) · Zbl 1381.52008 · doi:10.1016/j.jmaa.2017.08.054
[42] Yu, W.; Leng, G.; Wu, D., Dual \(L_p\) John ellipsoids, Proc. Edinb. Math. Soc., 50, 737-753 (2007) · Zbl 1136.52005 · doi:10.1017/S0013091506000332
[43] Zhu, B.; Hong, H.; Ye, D., The Orlicz-Petty bodies, Int. Math. Res. Not., 14, 4356-4403 (2018) · Zbl 1409.52010 · doi:10.1093/imrn/rnx008
[44] Zou, D.; Xiong, G., Orlicz-John ellipsoids, Adv. Math., 265, 132-168 (2014) · Zbl 1301.52015 · doi:10.1016/j.aim.2014.07.034
[45] Zou, D.; Xiong, G., Orlicz-Legendre ellipsoids, J. Geom. Anal., 26, 2474-2502 (2016) · Zbl 1369.52015 · doi:10.1007/s12220-015-9636-0
[46] Zvavitch, A., The Busemann-Petty problem for arbitrary measures, Math. Ann., 331, 867-887 (2005) · Zbl 1070.52004 · doi:10.1007/s00208-004-0611-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.