×

On \(L_p\)-Brunn-Minkowski type and \(L_p\)-isoperimetric type inequalities for measures. (English) Zbl 1465.52021

Summary: In 2011 Lutwak, Yang and Zhang extended the definition of the \(L_p\)-Minkowski convex combination \((p \geq 1)\) introduced by Firey in the 1960s from convex bodies containing the origin in their interiors to all measurable subsets in \(\mathbb{R}^n\), and as a consequence, extended the \(L_p\)-Brunn-Minkowski inequality \((L_p\)-BMI) to the setting of all measurable sets. In this paper, we present a functional extension of their \(L_p\)-Minkowski convex combination – the \(L_{p,s} \)-supremal convolution and prove the \(L_p\)-Borell-Brascamp-Lieb type (\(L_p\)-BBL) inequalities. Based on the \(L_p\)-BBL type inequalities for functions, we extend the \(L_p\)-BMI for measurable sets to the class of Borel measures on \(\mathbb{R}^n\) having \(\left (\frac{1}{s}\right )\)-concave densities, with \(s \geq 0\); that is, we show that, for any pair of Borel sets \(A,B \subset \mathbb{R}^n\), any \(t \in [0,1]\) and \(p\geq 1\), one has \[\mu ((1-t) \cdot_p A +_p t \cdot_p B)^{\frac{p}{n+s}} \geq (1-t) \mu (A)^{\frac{p}{n+s}} + t \mu (B)^{\frac{p}{n+s}},\] where \(\mu\) is a measure on \(\mathbb{R}^n\) having a \(\left (\frac{1}{s}\right )\)-concave density for \(0 \leq s < \infty \).
Additionally, with the new defined \(L_{p,s}\)-supremal convolution for functions, we prove \(L_p\)-BMI for product measures with quasi-concave densities and for log-concave densities, \(L_p\)-Prékopa-Leindler type inequality \((L_p\)-PLI) for product measures with quasi-concave densities, \(L_p\)-Minkowski’s first inequality \((L_p\)-MFI) and \(L_p\) isoperimetric inequalities (\(L_p\)-ISMI) for general measures, etc. Finally a functional counterpart of the Gardner-Zvavitch conjecture is presented for the \(p\)-generalization.

MSC:

52A39 Mixed volumes and related topics in convex geometry
52A40 Inequalities and extremum problems involving convexity in convex geometry
28A75 Length, area, volume, other geometric measure theory

References:

[1] Artstein-Avidan, Shiri; Giannopoulos, Apostolos; Milman, Vitali D., Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs 202, xx+451 pp. (2015), American Mathematical Society, Providence, RI · Zbl 1337.52001 · doi:10.1090/surv/202
[2] Ball, Keith, Logarithmically concave functions and sections of convex sets in \(\mathbf{R}^n\), Studia Math., 88, 1, 69-84 (1988) · Zbl 0642.52011 · doi:10.4064/sm-88-1-69-84
[3] Bobkov, Sergey G., Convex bodies and norms associated to convex measures, Probab. Theory Related Fields, 147, 1-2, 303-332 (2010) · Zbl 1247.46011 · doi:10.1007/s00440-009-0209-7
[4] Bobkov, S. G.; Colesanti, A.; Fragal\`a, I., Quermassintegrals of quasi-concave functions and generalized Pr\'{e}kopa-Leindler inequalities, Manuscripta Math., 143, 1-2, 131-169 (2014) · Zbl 1290.26019 · doi:10.1007/s00229-013-0619-9
[5] Borell, C., Convex set functions in \(d\)-space, Period. Math. Hungar., 6, 2, 111-136 (1975) · Zbl 0307.28009 · doi:10.1007/BF02018814
[6] B\"{o}r\"{o}czky, K\'{a}roly J.; Heged\H{u}s, P\'{a}l; Zhu, Guangxian, On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. IMRN, 6, 1807-1838 (2016) · Zbl 1345.52002 · doi:10.1093/imrn/rnv189
[7] B\"{o}r\"{o}czky, K\'{a}roly J.; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, The log-Brunn-Minkowski inequality, Adv. Math., 231, 3-4, 1974-1997 (2012) · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015
[8] B\"{o}r\"{o}czky, K\'{a}roly J.; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26, 3, 831-852 (2013) · Zbl 1272.52012 · doi:10.1090/S0894-0347-2012-00741-3
[9] B\"{o}r\"{o}czky, K\'{a}roly J.; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, Affine images of isotropic measures, J. Differential Geom., 99, 3, 407-442 (2015) · Zbl 1325.28004
[10] B\"{o}r\"{o}czky, K\'{a}roly J.; Trinh, Hai T., The planar \(L_p\)-Minkowski problem for \(0<p<1\), Adv. in Appl. Math., 87, 58-81 (2017) · Zbl 1376.52013 · doi:10.1016/j.aam.2016.12.007
[11] Brascamp, Herm Jan; Lieb, Elliott H., On extensions of the Brunn-Minkowski and Pr\'{e}kopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 22, 4, 366-389 (1976) · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[12] global S. Chen, Y. Huang, Q. Li and J. Liu, The \(L_p\)-Brunn-Minkowski inequality for \(p< 1\), Adv. Math., 368 (2020), 107166. · Zbl 1440.52013
[13] Colesanti, Andrea; Fragal\`a, Ilaria, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math., 244, 708-749 (2013) · Zbl 1305.26033 · doi:10.1016/j.aim.2013.05.015
[14] Colesanti, Andrea; Livshyts, Galyna V.; Marsiglietti, Arnaud, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal., 273, 3, 1120-1139 (2017) · Zbl 1369.52013 · doi:10.1016/j.jfa.2017.04.008
[15] EM A. Eskenazis and G. Moschidis, The dimensional Brunn-Minkowski inequality in Gauss space, preprint. · Zbl 1456.52011
[16] Firey, Wm. J., \(p\)-Means of convex bodies, Math. Scand., 10, 17-24 (1962) · Zbl 0188.27303 · doi:10.7146/math.scand.a-10510
[17] Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), 39, 3, 355-405 (2002) · Zbl 1019.26008 · doi:10.1090/S0273-0979-02-00941-2
[18] Gardner, Richard J.; Zvavitch, Artem, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc., 362, 10, 5333-5353 (2010) · Zbl 1205.52002 · doi:10.1090/S0002-9947-2010-04891-3
[19] Hardy, G. H.; Littlewood, J. E.; P\'{o}lya, G., Inequalities, xii+324 pp. (1952), Cambridge, at the University Press · Zbl 0634.26008
[20] Klartag, B., Marginals of geometric inequalities. Geometric aspects of functional analysis, Lecture Notes in Math. 1910, 133-166 (2007), Springer, Berlin · Zbl 1132.52015 · doi:10.1007/978-3-540-72053-9\_9
[21] Klartag, B.; Milman, V. D., Geometry of log-concave functions and measures, Geom. Dedicata, 112, 169-182 (2005) · Zbl 1099.28002 · doi:10.1007/s10711-004-2462-3
[22] Koldobsky, Alexander, Fourier analysis in convex geometry, Mathematical Surveys and Monographs 116, vi+170 pp. (2005), American Mathematical Society, Providence, RI · Zbl 1082.52002 · doi:10.1090/surv/116
[23] HKL A. Kolesnikov and G. Livshyts, On the local version of the log-Brunn-Minkowski conjecture and some new related geometric inequalities, accepted by J. Geom. Anal. · Zbl 1497.52014
[24] KL A. Kolesnikov and G. Livshyts, On the Gardner-Zvavitch conjecture: symmetry in the inequalities of Brunn-Minkowski type, accepted by Adv. Math.
[25] KolMilsupernew A. Kolesnikov and E. Milman, Local \(L_p\)-Brunn-Minkowski inequalities for \(p<1\), accepted by Mem. Amer. Math. Soc.
[26] Leindler, L., On a certain converse of H\"{o}lder’s inequality. II, Acta Sci. Math. (Szeged), 33, 3-4, 217-223 (1972) · Zbl 0245.26011
[27] Livshyts, Galyna V., An extension of Minkowski’s theorem and its applications to questions about projections for measures, Adv. Math., 356, 106803, 40 pp. (2019) · Zbl 1429.52004 · doi:10.1016/j.aim.2019.106803
[28] Livshyts, Galyna; Marsiglietti, Arnaud; Nayar, Piotr; Zvavitch, Artem, On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, Trans. Amer. Math. Soc., 369, 12, 8725-8742 (2017) · Zbl 1376.52014 · doi:10.1090/tran/6928
[29] Lutwak, Erwin, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38, 1, 131-150 (1993) · Zbl 0788.52007
[30] Lutwak, Erwin, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math., 118, 2, 244-294 (1996) · Zbl 0853.52005 · doi:10.1006/aima.1996.0022
[31] Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. in Appl. Math., 48, 2, 407-413 (2012) · Zbl 1252.52006 · doi:10.1016/j.aam.2011.11.003
[32] Marsiglietti, Arnaud, A note on an \(L^p\)-Brunn-Minkowski inequality for convex measures in the unconditional case, Pacific J. Math., 277, 1, 187-200 (2015) · Zbl 1396.52015 · doi:10.2140/pjm.2015.277.187
[33] Marsiglietti, Arnaud, On the improvement of concavity of convex measures, Proc. Amer. Math. Soc., 144, 2, 775-786 (2016) · Zbl 1334.28007 · doi:10.1090/proc/12694
[34] Nayar, Piotr; Tkocz, Tomasz, A note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Amer. Math. Soc., 141, 11, 4027-4030 (2013) · Zbl 1305.52017 · doi:10.1090/S0002-9939-2013-11609-6
[35] Pr\'{e}kopa, Andr\'{a}s, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. (Szeged), 32, 301-316 (1971) · Zbl 0235.90044
[36] Putter E. Putterman, Equivalence of the local and global versions of the \(L^p \)-Brunn-Minkowski inequality, 1909.03729.
[37] Ritor\'{e}, Manuel; Yepes Nicol\'{a}s, Jes\'{u}s, Brunn-Minkowski inequalities in product metric measure spaces, Adv. Math., 325, 824-863 (2018) · Zbl 1381.52015 · doi:10.1016/j.aim.2017.12.010
[38] Rockafellar, R. Tyrrell, Convex analysis, Princeton Mathematical Series, No. 28, xviii+451 pp. (1970), Princeton University Press, Princeton, N.J. · Zbl 0932.90001
[39] Rossi, Andrea; Salani, Paolo, Stability for a strengthened Borell-Brascamp-Lieb inequality, Appl. Anal., 98, 10, 1773-1784 (2019) · Zbl 1428.26052 · doi:10.1080/00036811.2018.1451645
[40] liran L. Rotem, A letter: the log-Brunn-Minkowski inequality for complex bodies, http://www.tau.ac.il/ liranro1/papers/complexletter.pdf.
[41] Roysdon, Michael, Rogers-Shephard type inequalities for sections, J. Math. Anal. Appl., 487, 1, 123958, 22 pp. (2020) · Zbl 1445.52006 · doi:10.1016/j.jmaa.2020.123958
[42] Saroglou, Christos, Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata, 177, 353-365 (2015) · Zbl 1326.52010 · doi:10.1007/s10711-014-9993-z
[43] Saroglou, Christos, More on logarithmic sums of convex bodies, Mathematika, 62, 3, 818-841 (2016) · Zbl 1352.52001 · doi:10.1112/S0025579316000061
[44] Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications 151, xxii+736 pp. (2014), Cambridge University Press, Cambridge · Zbl 1287.52001
[45] Stancu, Alina, The logarithmic Minkowski inequality for non-symmetric convex bodies, Adv. in Appl. Math., 73, 43-58 (2016) · Zbl 1331.52014 · doi:10.1016/j.aam.2015.09.015
[46] Stancu, Alina; Vikram, Shardul, A flow approach to the fractional Minkowski problem, Geom. Dedicata, 191, 137-151 (2017) · Zbl 1390.53074 · doi:10.1007/s10711-017-0248-7
[47] Wu, Denghui, A generalization of \(L_p\)-Brunn-Minkowski inequalities and \(L_p\)-Minkowski problems for measures, Adv. in Appl. Math., 89, 156-183 (2017) · Zbl 1369.52009 · doi:10.1016/j.aam.2017.05.001
[48] Yang, Yunlong; Zhang, Deyan, The log-Brunn-Minkowski inequality in \(\mathbb{R}^3\), Proc. Amer. Math. Soc., 147, 10, 4465-4475 (2019) · Zbl 1423.52011 · doi:10.1090/proc/14366
[49] Zhu, Guangxian, The \(L_p\) Minkowski problem for polytopes for \(0<p<1\), J. Funct. Anal., 269, 4, 1070-1094 (2015) · Zbl 1335.52023 · doi:10.1016/j.jfa.2015.05.007
[50] Zou, Du; Xiong, Ge, A unified treatment for \(L_p\) Brunn-Minkowski type inequalities, Comm. Anal. Geom., 26, 2, 435-460 (2018) · Zbl 1391.52011 · doi:10.4310/CAG.2018.v26.n2.a6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.